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Outline

p et algorithms

» How are jets made

p Jet substructure

» What’s inside them, and how to use it
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What is a jet?

No, not this....

A jet is something that happens
in high energy events:
a collimated bunch of hadrons flying
roughly in the same direction
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Gluon ‘discovery’
1979:

Three-jet events observed by

TASSO, JADE, MARK ] and PLUTO at

TASSO
& PETRA in e*e- collisions at 27.4 GeV
(R Interpretation:
large angle emission of a
| \e hard gluon
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Why jets

From PETRA to LEP

We could eyeball the collimated
bunches, but it becomes impractical
with millions of events

The classification of particles into jets is best done
using a clustering algorithm
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Jets @ LHC

A few decades after PETRA and LEP, the event displays got prettier,
but jets are still pretty much the same

CMS Experiment at LHC, CERN
| Run 133450 Event 16358963
Lumi section: 285

Sat Apr 17 2010, 12:25:05 CEST

Dijet event from CMS
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EXPERIMENT

Run Number: 166198, Event Number: 100726931

Date: 2010-10-05 03:27:52 CEST
\4

8(!) jets event from ATLAS
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Jets @ LHC

CMS Experiment at the LHC, CERN

Data recorded 2011-Sep-12 143109077784 GMT(16 31.09 CEST)

Run/Evert 1761607 163020800

R L
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quark

Why do jets happen!
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QCD predictions

Taming reality

o~
—
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Real data

One purpose of a ‘jet clustering’ algorithm is to
reduce the complexity of the final state, simplifying many hadrons
to simpler objects that one can hope to calculate

Matteo Cacciari - LPTHE
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Jet definitions as projections

NN g N

LO partons NLO partons parton shower hadron level
Jet | Def" Jet | Def" Jet | Def" Jet | Def"
jet 1 jet 2 jet 1 jet 2 jet 1 jet 2 jet 1 jet 2

VNN

Projection to jets should be resilient to QCD effects

NB: projections are NOT unique:
a jet is NOT EQUIVALENT to a parton
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Reconstructing jets is an ambiguous task

2 Clear |ets 3 jets?

Gavin Salam (CERN) QCD basics 4 ICTP-SAIFR school, July 2015 7



Reconstructing jets is an ambiguous task

2 Clear jets 3 jets?
or 4 jets?

Gavin Salam (CERN) QCD basics 4 ICTP-SAIFR school, July 2015 8



Jet clustering algorithm

A jet algorithm maps the momenta of the final state particles
into the momenta of a certain number of jets:

{p} —— i

particles, jets
4-momenta,

calorimeter towers, ....

Most algorithms contain a resolution parameter, R,
which controls the extension of the jet

“Jet [definitions] are legal contracts between theorists and experimentalists”
-- MJ Tannenbaum
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Jets

Jets can serve two purposes

» They can be observables, that one can measure
and calculate

» They can be tools, that one can employ to extract
specific properties of the final state

Different clustering algorithms have different properties and characteristics
that can make them more or less appropriate for each of these tasks
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IRC safety

An observable is infrared and collinear safe if,
in the limit of a collinear splitting, or the emission of an
infinitely soft particle, the observable remains unchanged:
O(X;p1y-- s PnyPnt1 — 0) = O(X;p1, ..., pn)
O(X;p1s--yPn || Pnt1) = O(X5p1, -+, P+ Pry1)

This property ensures cancellation of real and virtual divergences
in higher order calculations

If we wish to be able to calculate a jet rate in perturbative QCD
the jet algorithm that we use must be IRC safe:
soft emissions and collinear splittings must not change the hard jets
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Reconstructing jets must respect rules

Collinear Safe Collinear Unsafe
| jet 1 | | jet 1 | | jet 1 | | jet1nI
jet 2
og X (~) Og X (+) g X (—) og X (+)
Infinities cancel Infinities do not cancel

Perturbative calculations of jet observable will
only be possible with collinear (and infrared) safe
jet definitions
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Cone algorithms

The first rigorous definition of cone jets in QCD is due to Sterman and Weinberg
Phys. Rev. Lett. 39, 1436 (1977)
To study jets, we consider the partial cross section
o(E,B,R0,¢,8) for e+e- hadron production events, in which all but

a fraction e <<1 of the total e+e- energy E is emitted within

some pair of oppositely directed cones of half-angle § << 1,
lying within two fixed cones of solid angle @1 (with wé? <<l << 1)

.‘.-
at an angle & to the e e beam line., We expect this to be measur-

Two-jet rate:

: A |
0(E,0.0,¢c,8) = (do/da) |l - (gé/h’){szn § + 42né &n 2¢ +l'§--g-}
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Jet algorithms

The Sterman-Weinberg definition is “inclusive enough”
for IRC safety
Good for 2 jets and ete- collisions

What happens in a more general case, where more than
two jets are likely to exist?

Where do we place the cones? How many!

Iterative jet algorithms
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Two main approaches to jet cIusterlng ,

|. Find regions where a lot of energy flows @‘

2. Decide which particles are “close”,
aggregate them

In HEP these are usually called cone and
sequential recombination algorithms

respectively

(in other fields they are often called partitional-type clustering
and agglomerative hierarchical clustering)
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Two main classes of jet algorithms

» Sequential recombination algorithms
Bottom-up approach: combine particles starting from closest ones
How! Choose a distance measure, iterate recombination until

few objects left, call them jets
Works because of mapping closeness < QCD divergence
Examples: Jade, ki, Cambridge/Aachen, anti-ks, .....

Usually trivially made IRC safe, but their
algorithmic complexity scales like N3

» Cone algorithms

Top-down approach: find coarse regions of energy flow.

How! Find stable cones (i.e. their axis coincides with sum of momenta of particles in it)

Works because QCD only modifies energy flow on small scales
Examples: JetClu, MidPoint, ATLAS cone, CMS cone, SISCone......

Can be programmed to be fairly fast, at the
price of being complex and IRC unsafe
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Recombination algorithms

» First introduced in e*e- collisions in the '80s

» Typically they work by calculating a ‘distance’
between particles, and then recombine them pairwise
according to a given order, until some condition is met
(e.g. no particles are left, or the distance crosses a given

threshold)

IRC safety can usually be seen to be trivially guaranteed

Matteo Cacciari - LPTHE Frascati Summer School - July 2022
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JADE algorithm

QEZEJ(l — COS 923)

Distance: Ui

» Find the minimum ymin of all yj

» If ymin is below some jet resolution threshold ycu, recombine i and |
into a single new particle (‘pseudojet’), and repeat

» If NO Ymin < Ycurare left, all remaining particles are jets

Problem of this particular algorithm:
two soft particles emitted at large angle get easily recombined into a single
jet: counterintuitive and perturbatively troublesome
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e*e- ke (Durham) algorithm

[Catani, Dokshitzer, Olsson, Turnock,VWebber '91]

2min(E?, E?)(1 — cos 6,
Distance: Yij = mln( v é)2( COS J)

In the collinear limit, the numerator reduces to the relative transverse
momentum (squared) of the two particles, hence the name of the algorithm

» Find the minimum ymin of all yj

» If ymin is below some jet resolution threshold ycu, recombine i and |
into a single new particle (‘pseudojet’), and repeat

» If NO Ymin < ycurare left, all remaining particles are jets
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e*te- k¢ (Durham) algorithm in action

g
=) !
£ ,L OPAL (91 GeV) .
P 2-jet
= Durham J
z |
0.8
, Characterise events
| 2-jet ] .
06 2l in terms of number of jets
© S-jet i
e (as a function of ycut)
0.4 HERWIG
\\\3-jet
02 N A \

Resummed calculations for distributions of yc.. doable with the k;algorithm
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e*te- ke (Durham) algorithm v. QCD

ke is a sequential recombination type algorithm

One key feature of the k; de—)z’j Qg
algorithm is its relation to the ~

structure of QCD divergences: dEzdew mln(Eia E])ew

The y;; distance is the inverse of the emission probability

» The k¢ algorithm roughly inverts the QCD branching sequence
(the pair which is recombined first is the one with the largest
probability to have branched)

» The history of successive clusterings has physical meaning
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ke algorithm in hadron collisions

(Inclusive and longitudinally invariant version)
2
RQ

» Calculate the distances between the particles: dj

2 D
dij = mln(ptz‘aptj

dip = P?z'

» Calculate the beam distances: dig

» Combine particles with smallest distance d; or,
if dig is smallest, call it a jet

» Find again smallest distance and repeat procedure until

no particles are left (this stopping criterion leads to the inclusive
version of the k; algorithm)

» Only use jets with pt > pemin
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The kealgorithm and its siblings

Ay2 i Ang

— i (2P 2D o — 2P
dij = min(py;, pi;) — 3 dip = Py
p= I k¢ algorithm S. Catani,Y. Dokshitzer, M. Seymour and B. Webber, Nucl. Phys. B406 (1993) 187

S.D. Ellis and D.E. Soper, Phys.Rev. D48 (1993) 3160

p = 0 Cambridge/Aachen algorithm
Y. Dokshitzer, G. Leder, S.Moretti and B. Webber, JHEP 08 (1997) 001
M.Wobisch and T.Wengler, hep-ph/9907280

p = -1 anti-k¢: algorithm MC, G. Salam and G. Soyez, arXiv:0802.1 189

NB: in anti-kt pairs with a hard particle will cluster first: if no other
hard particles are close by, the algorithm will give perfect cones

Quite ironically, a sequential recombination algorithm is the ‘perfect’ cone algorithm
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IRC safety of generalised-k: algorithms

Ay2 1 Ang
RZ

2p 2p)

: 2
dij = min(p;;, p;; dip = pj;

p>0
New soft particle (p: —0) means thatd =+ 0 = clustered first, no effect on jets

New collinear particle (Ay2+A®2 = 0) means thatd = 0 = clustered first, no effect on jets

p=0
New soft particle (pc —0) can be new jet of zero momentum = no effect on hard jets

New collinear particle (Ay2+A®2 = 0) means thatd & 0 = clustered first, no effect on jets

p<oO
New soft particle (p: @0) means d 00 = clustered last or new zero-jet, no effect on hard jets

New collinear particle (Ay2+A®2 = 0) means thatd & 0 = clustered first, no effect on jets
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IRC safe algorithms

SR
: ' 191
kt dij — mln(ptiz,pt,-2)ARijZ/R2 Ela“t:r;loel;cei ‘;93 NInN
hierarchical in rel P; ’
C idoe/ SR
ambri ge d- = AR:2/R2 Dokshitzer et al ‘97 NInN
Aach ! ! Wengler, Wobish ‘98 4
acnen hierarchical in angle
SR

: . MC, Salam, Soyez '08
anti-l:  |di = min(ps2,py2)AR;2/R2 (D;::;t’ fg’:}f) N3/2

gives perfectly conical hard jets

Seedless iterative cone
SlSCone with split-merge Salam, Soyez ‘07 N2InN

gives ‘economical’ jets

‘'second-generation’ algorithms
All are available in Fast]et, http://fastjet.fr

(As well as many IRC unsafe ones)
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http://fastjet.fr

Fast|et speed

Time needed to cluster an event with N particles

10%
| Intel® 5760 | _
10 — Fastdet3.0.1 X, (\ o - """""""" _
| R=0.7 |
1 e e i -
| O
b S —;
502 Eis A e _:
o | :
E 108t R — A—-—- e ;
4l | | | | |
10" A collisions e ;
105 | ~ with pileup anti-k; —e— |
Foa A A k b
108 L hadron cIA —— |-
. : cotisions SISCone —+—
10‘ . L . L . L . L . : :
1 10 10°  10° 10* 10° 10° 10’
N
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Anti-k: In action

2
Clustering grows g 1 AR g 1
around hard cores Y max(p},pf;) R? )
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Anti-k: In action

2
Clustering grows g 1 AR7; i 1
[/ ’ 1D —
around hard cores 7 max(p},p7;) R? P2 )

anti-kt, d = 1.00e-100
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Anti-k: In action
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Anti-k: In action

. 2
Clustering grows - AR, L 1
W= 2 2 2 7 b — 9
around hard cores max(p;, Py;) L2 .
v

anti-kt, d = 1.00e+100

Anti-k: gives
circular jets
(“cone-like”
N in a way that’s
-~ N infrared safe

Lo
A o,

D
AR
m e
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Example of jet observable

LI B I B AN Y P P P B I

rho e

*1'

\s =7 TeV

L=5.0fb"

I

anti-k, R = 0.7

He=He=P;
NNPDF2.1 ® NP Corr.

|

<« (0" O e

I I I I

ly| < 0.5 (x 10*)

05<|y|<1.0(x10%)
1.0<|y| <1.5(x10?%)
1.5<]y|<2.0(x10")
20<|y|<25(x10°)

1 S I N N N N N NN N N AN A B

| ] | | |

200 300

1000
Jet P_

2000
(GeV)

Inclusive
jet cross
section

Excellent
theory-data
agreement over
many orders of
magnitude

51



Take home points

» A vast zoology of jet algorithms has been reduced in the past
few years to 4 infrared and collinear safe algorithms

» All are implemented in an efficient and fast way

» Of these, anti=K¢ is used by all the LHC collaborations as
their main algorithm for “finding” jets and measuring
inclusive cross sections

» The four algorithms have quite different characteristics, which

makes them non easily swappable when specific properties
are needed for specific tasks. On the other hand, chances are

that one can chose the algorithm which is most appropriate
for a specific job
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Jet substructure

At the end of a jet finding (i.e. clustering) procedure,
a jet is a collection of constituents to which

we assign a 4-momentum
(related to the sum of the 4-momenta of the constituents)

What is the arrangement of the constituents
inside the jet!

+
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Jet substructure

First studied by Mike Seymour in the early “90s
to distinguish W jets from QCD jets

Topic revived about fifteen years

ago in order to study boosted objects
[Butterworth, Davison, Rubin, Salam, 0802.2470]

&
7
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Jet substructure

hadronic top ,9! .
candidate & '

=
®

leptonic top

candidate | "B’

The past fifteen years have seen en explosion in jet
substructure studies, i.e. how radiation is
arranged within jets, and what it can tell us
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p/GeV

50 4

40 4

30 4

20 1

Jet substructure

T+ Jet
> @ declustering

1 2 3 4
(calculate a function from
radiation distribution
Convolved
Convolutions Feature Layers

Machine learning

Max-Pooling

W'—= WZevent

Repeat
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Why boosted objects

/

4 7

Heavy particle X at rest Boosted heavy particle X
Easy to resolve jets and Cross section very much
calculate invariant mass, reduced, but acceptance
but signal very likely better and some
swamped by background backgrounds smaller/

(eg H—bb v. tt =WbWhb) reducible
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Mass of a single jet

G. Salam
0.035 r r -
008 Wj events /
'-; 0.025 1 %
o)
0} i Priets >700GeV | . .
s 0 ‘antik, R=07 A heavy object decaying
S 0015 into a single jet naturally
° o . .
€ 0oy S|gna| ‘ gives it a mass...
0.005 —I_L‘_‘\ 1
o l ‘ l
0 50 100 150 200
Migy [GeV]
0.016
L - events .
0.014 e ..but pure QCD jets can be
-~ 0012 | .
> massive too:
S 0.01 P jets > 700 GeV
= 0.008 anti-k,, R=0.7
A dN ptR
Z 0006 | | ¢ Sudak
s ——— ~ i In —— X Sudakov
S 0004 | dinm m
oz [ Backgro
0 A A A
0 50 100 150 200

Mg, [GeV]
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Mass of a single jet

Summing ‘signal’ and ‘background’ (with appropriate cross sections)

shows how much the background dominates

0.016 0.016

0.014 | qq —> qq events | 0.014 } qq —> qq + Wj mixture
0012 | < 0.012 |
> >
o 001 P jets > 700 GeV o 001 Pjets > 700 GeV
£ 0.008 | anti-k, R =0.7 £ 0.008 | anti-k, R=0.7
S S
% 0.006 | % 0.006 +
€ 0004} € 0004t

0.002 | 0.002 |

0 4 i I 0 4 A 4
0 50 100 150 200 0 50 100 150
Migy [GeV] Migy [GeV]

Background only

Signal + background
Practically identical

This means that one can’t rely on the invariant mass only.
An appropriate strategy must be found to reduce the background

Matteo Cacciari - LPTHE

and enhance the signal
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How to tell this

Decay of a heavy
(boosted) object

Matteo Cacciari - LPTHE

/ from this

X

Frascati Summer School - July 2022

Tagging

Light parton
fragmentation
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Tagging and Grooming

» The substructure of a jet can be exploited to

» tag a particular structure inside the jet, i.e. a massive
particle

» First examples: Higgs (2-prong decay), top (3-prong decay)

» remove background contamination from the jet or its
components, while keeping the bulk of the perturbative
radiation (often generically denoted as grooming)

» First examples: filtering, trimming, pruning

Matteo Cacciari - LPTHE Frascati Summer School - July 2022 6l



Nomenclature

» Groomer
» procedure that always returns an output jet
(i.e. it only subtracts uncorrelated ‘UE/pileup’ radiation from
it. This is used to “clean” the jets from radiation largely
unrelated to the fragmentation of the particle of interest)

» Tagger
» procedure that might not return an output jet
(i.e. it either tags a heavy particle originating the jet or
returns zero. This is used to identify a specific particle
originating the jet.)

In practice, this classification is not always followed.
In some cases it also denoted a ‘tagger’ a procedure that rejects
background jets more often than signal jets
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Why substructure
Scales: m ~ 100 GeV, p. ~ 500 GeV

(e.g. electroweak particle from decay of ~ | TeV BSM particle)

-~
\

-~

1 - v
boosted X __ , single psm 1
‘ = ! et ™ pt/z(1 - 2)

R —— /7\?/\\\\ //

» need small R (< 2m/p; ~ 0.4) to resolve two prongs
» need large R (>~ 3m/p. ~ 0.6) to cluster into a single jet

Possible strategies

» Use large R, get a single jet : background large

» Use small R, resolve the jets : what is the right scale?
p Also: small jets lead to huge combinatorial issues

Let an algorithm find the ‘right’ substructure
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What jets to use for substructure!?

Different jet algorithms will give different ‘pictures’
of what’s inside a jet
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Distance

Dendrogram

Used to represent graphically the sequence of clustering steps

in a sequential recombination algorithm

|
____________ D l Internal node
C . |
1 B l Distance between two objects

¢ A ¢ is given by the height of the

R Bl AR (S lowest internal node that they

W ‘ai{f’f share.

d}"‘: ) -'..f \."'.

l\. / '!.":_—_.—_T,ﬁ. ! ==

&.’L o s

3 4 5

Order of clustering here is A, B, C,D

The clustering sequence is 4-5 (A), 2-3 (B), 23-45 (C), 1-2345 (D)

Matteo Cacciari - LPTHE
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anti-kt
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First try
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Hierarchical substructure

anti-k; algorithm

0. Anti-k. distance measure
© | , 1 1\ Ay? + Ao¢?
30 - 41 dZ] — Inin 27 .2 RQ
Pyi Py
0. Cluster by merging
L1 . tothe hardest/closest particle
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|dentifying jet substructure: try out anti-k;

p./GeV

50 -

40 |

30 -

20 -

10 -

anti-k; algorithm

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).



|dentifying jet substructure: try out anti-k;

How well can an algorithm identify

anti-k; algorithm . _
the “blobs” of energy inside a jet that

dmin is dij = 3.57137e-05 _
p/GeV come from different partons?
50 This is crucial for identifying the
kinematic variables of the partons in

40 | the jet (e.g. z).

30 - K

20 -

10 -

0 -




|dentifying jet substructure: try out anti-k;

p./GeV

50 -

40 |

30 -

20 -

10 -

anti-k; algorithm

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).



|dentifying jet substructure: try out anti-k;

How well can an algorithm identify

anti-k; algorithm . _
the “blobs” of energy inside a jet that

dmin is dij = 0.000496598 ]
p/GeV come from different partons?
50 This is crucial for identifying the
kinematic variables of the partons in
he | g. Z).
40 | the jet (e.g. z)
30 -
20 -
10 -
0 -




|dentifying jet substructure: try out anti-k;

p./GeV

50 -

40 |

30 -

20 -

10 -

anti-k; algorithm

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).



|dentifying jet substructure: try out anti-k;

How well can an algorithm identify

anti-k; algorithm . _
the “blobs” of energy inside a jet that

dmin is dij = 0.000688842 _
p/GeV come from different partons?
50 This is crucial for identifying the
kinematic variables of the partons in
he | g. Z).
40 | the jet (e.g. z)
30 -
20 -
10 -
0 4




|dentifying jet substructure: try out anti-k;

p./GeV

50 -

40 |

30 -

20 -

10 -

anti-k; algorithm

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).



|dentifying jet substructure: try out anti-k;

anti-k; algorithm How well can an algorithm identify

dmin is dij = 0.000805103 the “blobs o.f energy inside a jet that
p/GeV come from different partons?

50 This is crucial for identifying the
kinematic variables of the partons in

40 | the jet (e.g. z).
Anti-k; gradually makes its way

30 1 through the secondary blob — no
clear identification of substructure

20 - associated with 2nd parton.

10 -
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|dentifying jet substructure: try out anti-k;

p./GeV

50 -

40 |

30 -

20 -

10 -

anti-k; algorithm

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-k; gradually makes its way
through the secondary blob — no
clear identification of substructure
associated with 2nd parton.



|dentifying jet substructure: try out anti-k;

p./GeV

50 -

40 |

30 -

20 -

10 -

anti-k; algorithm

dmin is dij

0.000773759

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-k; gradually makes its way
through the secondary blob — no
clear identification of substructure
associated with 2nd parton.



|dentifying jet substructure: try out anti-k;

p./GeV

50 -

40 |

30 -

20 -

10 -

anti-k; algorithm

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-k; gradually makes its way
through the secondary blob — no
clear identification of substructure
associated with 2nd parton.



|dentifying jet substructure: try out anti-k;

anti-k; algorithm How well can an algorithm identify

dmin is dij = 0.0014577 the “blobs o.f energy inside a jet that
p/GeV come from different partons?
50 This is crucial for identifying the
kinematic variables of the partons in
40 | the jet (e.g. z).
Anti-k; gradually makes its way
30 1 through the secondary blob — no
clear identification of substructure
20 - associated with 2nd parton.
10 -
0 4 : —L
0 1 2 3 4 y



|dentifying jet substructure: try out anti-k;

p./GeV

50 -

40 |

30 -

20 -

10 -

anti-k; algorithm

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-k; gradually makes its way
through the secondary blob — no
clear identification of substructure
associated with 2nd parton.



|dentifying jet substructure: try out anti-k;

anti-k; algorithm How well can an algorithm identify

dmin is diB = 0.00147749 the “blobs o.f energy inside a jet that
p/GeV come from different partons?
50 This is crucial for identifying the
kinematic variables of the partons in
40 | the jet (e.g. z).
Anti-k; gradually makes its way
30 1 through the secondary blob — no
clear identification of substructure
20 - associated with 2nd parton.
10 -
0 : —
0 1 2 3 4 y



|dentifying jet substructure: try out anti-k;

anti-k; algorithm How well can an algorithm identify

the “blobs” of energy inside a jet that
p/GeV come from different partons?
50 This is crucial for identifying the
kinematic variables of the partons in
40 the jet (e.g. z).
Anti-k; gradually makes its way
30 1 through the secondary blob — no
clear identification of substructure
20 - associated with 2nd parton.
10
0 v —
0 1 2 3 4 y



|dentifying jet substructure: try out anti-k;

anti-k; algorithm How well can an algorithm identify

dmin is diB = 1.9¢ the “blobs o.f energy inside a jet that
p/GeV come from different partons?
50 This is crucial for identifying the
kinematic variables of the partons in
40 | the jet (e.g. z).
Anti-k; gradually makes its way
30 1 through the secondary blob — no
clear identification of substructure
20 - associated with 2nd parton.
10 -
0 : —
0 1 2 3 4 y



|dentifying jet substructure: try out anti-k;

anti-k; algorithm How well can an algorithm identify

the “blobs” of energy inside a jet that
p/GeV come from different partons?
50 This is crucial for identifying the
kinematic variables of the partons in
40 the jet (e.g. z).
Anti-k; gradually makes its way
30 1 through the secondary blob — no
clear identification of substructure
20 - associated with 2nd parton.
10
0 v —i
0 1 2 3 4 y
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k; algorithm

p/GeV

50 4

20 +

10 4

el i dij = min(py;, p;)

Matteo Cacciari - LPTHE

Hierarchical substructure

k. distance measure
AyZ —|—A¢2
R2

Cluster by merging
the softest/closest particles
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|dentifying jet substructure: try out k;

How well can an algorithm identify

ki algorithm . ) o _
the “blobs” of energy inside a jet that
p/GeV come from different partons?
50 . This is crucial for identifying the
kinematic variables of the partons in
40 the jet (e.g. z).
30 -
20 -
10
0 -
0 1 2 3 4



|dentifying jet substructure: try out k;

p./GeV

50 -

40 4

30 -

20 -

10 -

ki algorithm
dmin is dij = 0.318802

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).



|dentifying jet substructure: try out k;

p./GeV

50 -

40 4

30 -

20 -

10 -

ki algorithm

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).



|dentifying jet substructure: try out k;

p./GeV

50 -

40 4

30 -

20 -

10 -

ki algorithm
dmin is dij = 0.977453

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).



|dentifying jet substructure: try out k;

p./GeV

50 -

40 4

30 -

20 -

10 -

ki algorithm

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).



|dentifying jet substructure: try out k;

How well can an algorithm identify

ki algorithm o _
the “blobs” of energy inside a jet that

dmin is dij = 1.48276 _
p/GeV come from different partons?
50 . This is crucial for identifying the
kinematic variables of the partons in

40 | the jet (e.g. z).

' ’—j k: clusters soft “junk” early on in the
30 1 7 clustering
20 -
10 -
0 -

0 1 2 3 4



|dentifying jet substructure: try out k;

How well can an algorithm identify

ki algorithm o _
the “blobs” of energy inside a jet that
p/GeV come from different partons?
50 . This is crucial for identifying the
kinematic variables of the partons in
40 | the jet (e.g. z).
' k: clusters soft “junk” early on in the
30 1 7 clustering
20 -
10 -
O _I-I T T L
0 1 2 3 4



|dentifying jet substructure: try out k;

How well can an algorithm identify

ki algorithm o _
the “blobs” of energy inside a jet that

dmin is dij = 2.34277 _
p/GeV come from different partons?
50 . This is crucial for identifying the
kinematic variables of the partons in

40 | the jet (e.g. z).

' ’—j ﬁ k: clusters soft “junk” early on in the
30 1 7 clustering
20 -
10 -
0 —l—I e |—,-|_—L

0 1 2 3 4



|dentifying jet substructure: try out k;

p./GeV

50 -

40 4

30 -

20 -

10 -

ki algorithm

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

k: clusters soft “junk” early on in the
clustering



|dentifying jet substructure: try out k;

p./GeV

50 -

40 4

30 -

20 -

10 -

ki algorithm
dmin is dij = 13.5981

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

k: clusters soft “junk” early on in the
clustering



|dentifying jet substructure: try out k;

p./GeV

50 -

40 4

30 -

20 -

10 -

ki algorithm

=

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

k: clusters soft “junk” early on in the
clustering



|dentifying jet substructure: try out k;

p./GeV

50 -

40 4

30 -

20 -

10 -

ki algorithm
dmin is dij = 30.8068

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

k: clusters soft “junk” early on in the
clustering



|dentifying jet substructure: try out k;

p./GeV

50 -

40 4

30 -

20 -

10 -

ki algorithm

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

k: clusters soft “junk” early on in the
clustering



|dentifying jet substructure: try out k;

How well can an algorithm identify
dmin is dif = 717.825 the “blobs” of energy inside a jet that
p/GeV come from different partons?

ki algorithm

50 . This is crucial for identifying the
kinematic variables of the partons in

40 | the jet (e.g. z).

' | —\ k: clusters soft “junk” early on in the
ol | T clustering

Its last step is to merge two hard

20 - : . : :
pieces. Easily undone to identify un-
derlying kinematics

10

0 v
0 | 2 3 4



|dentifying jet substructure: try out k;

How well can an algorithm identify

ki algorithm o _
the “blobs” of energy inside a jet that

p/GeV come from different partons?
50 . This is crucial for identifying the

kinematic variables of the partons in

40 | the jet (e.g. z).

' —\ k: clusters soft “junk” early on in the
ol | H‘ T clustering

Its last step is to merge two hard

20 + . : . .
pieces. Easily undone to identify un-
derlying kinematics

10

0 .
0 1 2 3 4



|dentifying jet substructure: try out k;

How well can an algorithm identify
dmin s diB = 11430 the “blobs” of energy inside a jet that
p/GeV come from different partons?

ki algorithm

50 . This is crucial for identifying the
kinematic variables of the partons in

40 | the jet (e.g. z).

' —\ k: clusters soft “junk” early on in the
ol | H‘ T clustering

Its last step is to merge two hard

20 - : . : :
pieces. Easily undone to identify un-
derlying kinematics

10

0 v
0 | 2 3 4



|dentifying jet substructure: try out k;

How well can an algorithm identify

ki algorithm o _
the “blobs” of energy inside a jet that

p/GeV come from different partons?
50 . This is crucial for identifying the

kinematic variables of the partons in

40 | the jet (e.g. z).

' —\ k: clusters soft “junk” early on in the
ol | H‘ T clustering

Its last step is to merge two hard

20 - . . . .
pieces. Easily undone to identify un-
derlying kinematics

10
This meant it was the first algorithm

0 to be used for jet substructure.
0 1 2 3 4 Seymour '93

Butterworth, Cox & Forshaw '02



Third try

Cambridge/Aachen
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Hierarchical substructure

Cambridge/Aachen

p,/GeV
N C/A distance measure
40: - AyQ _|_ A¢2
30-‘ el e dz’j — 2
20 +
o] Cluster by merging
S I IR the closest particles
0 1 2 3 4
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Identifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

Cambridge/Aachen algorithm

50 -
40 -
30 -
20 -

10 -

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

p,/GeV

50 -

40 -

30 -

20 -

10 -

How well can an algorithm identify
the “blobs” of energy inside a jet that

DeltaR_{ij} = 0.142857 _
come from different partons?

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

Cambridge/Aachen algorithm

50 -
40 -
30 -
20 -

10 -

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

p,/GeV

50 -

40 -

30 -

20 -

10 -

How well can an algorithm identify
the “blobs” of energy inside a jet that

DeltaR {ij} = 0.214286 ]
come from different partons?

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

Cambridge/Aachen algorithm

50 -
40 |
30: ]
20 -

10 -

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

p,/GeV

50 -

40 -

30 -

20 -

10 -

How well can an algorithm identify
the “blobs” of energy inside a jet that

DeltaR_{ij} = 0.415037 _
come from different partons?

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

Cambridge/Aachen algorithm

50 -
40
0. ]
20 -

10 -

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

p,/GeV

50 -

40 -

30 -

20 -

10 -

How well can an algorithm identify
the “blobs” of energy inside a jet that

DeltaR_{ij} = 0.686928 _
come from different partons?

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

Cambridge/Aachen algorithm

50 - C/A identifies two hard blobs with
limited soft contamination

40 -
30 + ’_ﬁ
20 -

10 -

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify
beltaR (i} = 1.20645 the “blobs” of energy inside a jet that
p/GeV B come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them

Cambridge/Aachen algorithm

50 -

40 -

30: : KN

20 -

10 -

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify

Cambridge/Aachen algorithm h _
the “blobs” of energy inside a jet that

p/GeV come from different partons?

50 . C/A identifies two hard blobs with
limited soft contamination, joins
them

40

30 - V1

20 -

10 -

0 42 _ 1

0 1 2 3 4y

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify

Cambridge/Aachen algorithm h _
the “blobs” of energy inside a jet that

DeltaR {ij} = 1.93202 _
p/GeV come from different partons?
50 . C/A identifies two hard blobs with
limited soft contamination, joins
40 them, and then adds in remaining
| soft junk
W T
20 -
10 -
0 44 : L
0 1 2 3 4y

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify

Cambridge/Aachen algorithm h _
the “blobs” of energy inside a jet that

p/GeV come from different partons?

50 . C/A identifies two hard blobs with
limited soft contamination, joins

40 them, and then adds in remaining
soft junk

o T

20 -

10 -

0 : —

0 1 2 3 4y

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify

Cambridge/Aachen algorithm h _
the “blobs” of energy inside a jet that

DeltaR {ij} > 2 .
p/GeV come from different partons?

50 . C/A identifies two hard blobs with
limited soft contamination, joins

40 them, and then adds in remaining
soft junk

W T

20 -

10 -

0 : —

0 1 2 3 4y

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify

Cambridge/Aachen algorithm h _
the “blobs” of energy inside a jet that

p/GeV come from different partons?

50 . C/A identifies two hard blobs with
limited soft contamination, joins

40 them, and then adds in remaining
soft junk

I e

20 -

10 -

0 : —

0 1 2 3 4y

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify

Cambridge/Aachen algorithm h _
the “blobs” of energy inside a jet that

DeltaR {ij} > 2 .
p/GeV come from different partons?

50 . C/A identifies two hard blobs with
limited soft contamination, joins

40 them, and then adds in remaining
soft junk

W T

20 -

10 -

0 : —

0 1 2 3 4y

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify

Cambridge/Aachen algorithm h _
the “blobs” of energy inside a jet that

p/GeV come from different partons?
50 | C/A identifies two hard blobs with
limited soft contamination, joins
0. them, and then adds in remaining
soft junk

30 1 ‘ l—rq“ N The interesting substructure is buried
: inside the clustering sequence — it's
20 - less contamined by soft junk, but
needs to be pulled out with special

10 - techniques
Butterworth, Davison, Rubin & GPS '08
Kaplan, Schwartz, Reherman & Tweedie '08
0 0 1 5 3 ZLL Butterworth, Ellis, Rubin & GPS '09
y Ellis, Vermilion & Walsh '09

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Siide by Hierarchical substructure

Gavin Salam
anti-k; algorithm k: algorithm Cambridge/Aachen
p/GeV p/GeV p,/GeV

50 | 50 50

40 + 40 - 40 o
- - ]

30 | ] 0l 30 | ‘ g |

20 20 20

10 10 10

A L 0 0 1
0 1 2 3 4 y 0 0 1 2 3 4 y

Undo the last
clustering step(s)
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The IRC safe algorithms

. UE .| Hierarchical
Speed |Regularity contamiration Backreaction substructure
& ©00 | A Y ©® ©O
Cambridge| o 56 - - - 506
/Aachen
anti-k; | ©©© | e©00 | ®/© @0 ®0 X
SISCone ©o @& | ©000 » X

Array of tools with different characteristics.
Pick the right one for the job
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QCD v. heavy decay

A possible approach for reducing the QCD background is to identify the two
prongs of the heavy particle decay, and put a cut on their momentum fraction

1 1
(7, —= }/\Q?}-)_

Signal: Background:
1+ 22 1+ (1 —2)?
P g 1 ~ ~
(2) P(2) ~ T P(z) -
Will split mainly Will split mainly
symmetrically asymmetrically

Potential tagger: asymmetric splitting

: 2 -
~ Possibly 9 9 ARij N min(pei, Ptj)
implemented Y = mzn(ptz’)ptj)
via a cut on maz(pei, ptj)

m2
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Splittings and distances

Pti — ( I 'Z) Pt
Quasi-collinear L<
splitting (pg < p)
j m A

Invariant mass: m2 = DtiPtj AR? (1 — Z)Zp ARZ

(ps =), 2 2 2 < 2
ke distance: d’LJ — AR 1 m
— 2

For a given mass, the background will have smaller distance dj; than the signal,
i.e. it will tend to cluster earlier in the k; algorithm

Potential tagger: last clustering in k; algorithm

This is where the hierarchy of the k; algorithm becomes relevant.
QCD radiation is clustered first, and only at the end the symmetric,
large-angle splittings due to decays are reclustered
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Alternative algorithms

» Suppose that for some reasons (which will become clearer later) one does not
with to use the k. algorithm

» One must then find a way to determine what the relevant splitting (i.e. the
one due to the decay, not to QCD radiation) is.

A possible approach is to use a Mass-Drop requirement:
the clustering is progressively undone, and a splitting is the relevant one if
both subjects are much less massive than their combination
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»—-zH-wbs |1 he BDRS tagger/groomer

Butterworth, Davison, Rubin, Salam, 2008

mass drop

» A two-prong tagger/groomer for boosted Higgs, which
» Uses the Cambridge/Aachen algorithm (because it’s ‘physical’)

» Employs a Mass=-Drop condition, as well as an asymmetry cut to
find the relevant splitting (i.e.‘tag’ the heavy particle)

» Includes a post-processing step, using ‘filtering’ (introduced in the same paper)
to clean as much as possible the resulting jets of UE contamination
(‘grooming’)
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o ZH o vt BDRS: tagging

Hardest j
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p =>/ZH — vvbb

BDRS: tagging

Drop step 1; Delta R =1.03129; pt1=243.291 m1=139.158; pt2=3.944 m2=5.24475

p, [GeV] — d
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Undo last step of
clustering

Check how the mass splits
-.| between the two subjets
(my =139 GeV,my = 5 GeV
and how asymmetric the
splitting is

| > r
m; H O m?
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BDRS: tagging
p =>/ZH — vvbb

Drop step 2; Delta R = 0.87699; pt1=146.636 m1=52.3423; pt2=102.622 m2=27.7967

p, [GeV]

805 T
705 N
60

50
405~
30
20

10

m| = 52 GeV, m; = 28 GeV
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o | Stop when a large mass
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-~ e | (and recombine these
= = two jets)
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[NB. Parameters used P4 = 0.67 and ycu.. = 0.09]
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p =>/ZH — vvbb

Drop step 2; Delta R = 0.87699; pt1=146.636 m1=52.3423; pt2=102.622 m2=27.7967
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Start with the
recombined jet

BDRS: filtering
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BDRS: filtering
p 2ZH — vvbb

p, [GeV]
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BDRS: filtering
p =>/ZH — vvbb

Final filtered result, pt=227.257 'm=117.211

Only keep the ns
hardest jets

ot
e e e B U
-‘."‘“‘.:":.“‘o

The low-momentum stuff surrounding the hard particles has been removed
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op —=ZH — Vwbb Visualisation of BDRS

Butterworth, Davison, Rubin, Salam, 2008

| R S ,
N 3 ’
b b R
g -
mass drop filter
V] | ___H_._l'{”jl_‘_(. pt=246.211 m-159..-465 b, [GoV] [ Dropstep2; Ml-:.n:g PH1=146,636 m1#52.3423; u@um.nn | ] | Final ﬂlund_l:uult. pt=227.257 m=117.211

Undo the clustering into subjets, Re-cluster with smaller R,
Cluster with a large R until a large asymmetry/mass drop and keep only 3 hardest
is observed: tagging step jets: grooming step
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Soft Drop declustering

Larkoski, Marzani, Soyez, Thaler, 2014

A generalisation of the (modified) Mass-Drop tagger.
Progressively decluster and drop constituent unless

Soft Drop Condition:

min(pr1, pr2) ( AR ) &
> Zcut
pr1 + P12 Ry

i.e. remove large-angle
soft radiation from a jet

[Drawing from
2106.04589]
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Soft Drop declustering

Larkoski, Marzani, Soyez, Thaler, 2014

The paper contains
v’ analytical calculations and comparisons to Monte Carlos
v study of effect of non-perturbative corrections
v performance studies

W jets QCD jets
0.06 1 T T T 1 — 1 T T T T T T 1
notag —— 0.014 [-: Pythia8(4C) notag —— -
0.05 - p=2 ------- _ "\ Vs=14 TeV, R=1 B=2 -------
—_ “ [%:1 ------- __0.012 | p>500 GeV [[2:8 ....... -
3 0.04 =12 —— - > 001 | 42— -
0] p=-1 —— S a 1 —
£ 0.03 |- p=-3/2 - _ e 0.008 - -3 — -
2 Pythia8(4C) K] .
3 0.02 Vs=14 TeV, R=1 g 0.006 - -
= P00 GeV 2 0.004 | )
>0 0.002 =
0 0 IEETRALE EEEF FPPSs S wwws
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Example of SoftDrop performance when used as a boosted W tagger
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Take home points

The big news of the past fifteen years has been the development of
robust taggers and groomers using properties of jet substructure,
through

» declustering
» jet shapes

» direct analysis of images (machine learning)

These techniques have been commissioned by experimental
collaborations and have proven their worth in ‘Standard Model’
analyses. They are now being implemented in BSM searches
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