Neutrino Cosmology: Lecture II

Miguel Escudero Abenza

miguel.escudero@tum.de

XX LNF Summer School Bruno Touschek Frascati 14-07-2022

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Outline

Neutrino Masses in Cosmology

- Bounds in ΛCDM
- **Cosmological model dependence**

The Hubble tension and neutrinos

- What is the status?
- **Could neutrinos be related to it?**

Conclusions & Outlook

Set Up

Unlike neutrinos, I like to interact 😃

The plan is to learn and discuss. Therefore:

Questions and Comments are most welcome, at any time!!!!

(great thanks to those who asked questions yesterday!)

Miguel Escudero

Neutrino Cosmology

Neutrino Evolution

Neutrinos are always a relevant species in the Universe's evolution

Evidence for Cosmic Neutrinos

Current constraints

BBN
$$N_{\rm eff}^{\rm BBN} = 2.86 \pm 0.28$$
Pisanti et al. 2011.11537Planck+BAO $N_{\rm eff}^{\rm CMB} = 2.99 \pm 0.17$ Planck 2018, 1807.06209

Standard Model prediction: $N_{eff}^{SM} = 3.044(1)$

- Data is in excellent agreement with the Standard Model prediction
- This provides strong (albeit indirect) evidence for the **Cosmic Neutrino Background.**

5

Planck 2018, 1807.06209

Neutrino Properties

Figure from de Salas et al. 1806.11051

Mass differences and mixings measured with high precision

What is the neutrino mass scale? i.e. Σm_{ν} ? i.e. m_{lightest} ?

Cosmology

1) Massive neutrinos modify the expansion history

• 2) Massive neutrinos suppress the growth of structure

Taken from a talk by Steen Hannestad Link.

This happens because neutrinos travel very fast and therefore cannot fall in gravitational potentials. The effect of this smoothing is proportional to Ω_{ν}

Miguel Escudero

Neutrino Cosmology

Cosmic Microwave Background Anisotropies

Neutrinos of $m_{\nu} < 0.5 \text{ eV}$ become non-relativistic after recombination. That means that their effect on the anisotropies is somewhat small!

The most relevant impact is through the effect of gravitational lensing:

The larger the neutrino mass the less is the CMB light lensed!

Miguel Escudero

Neutrino Cosmology

Cosmic Microwave Background Anisotropies

The effect of neutrino masses in the CMB:

Galaxy Surveys

Suppression from $\Omega_{
ho}h^2$

Planck 2018 for **ACDM** (1807.06209)

$$\begin{split} &\sum m_{\nu} < 0.54 \, \mathrm{eV} \qquad \text{(95 \% CL, TT+lowE)} \\ &\sum m_{\nu} < 0.26 \, \mathrm{eV} \qquad \text{(95 \% CL, TTTEEE+lowE)} \\ &\sum m_{\nu} < 0.24 \, \mathrm{eV} \qquad \text{(95 \% CL, TTTEEE+lowE+lensing)} \\ &\sum m_{\nu} < 0.12 \, \mathrm{eV} \qquad \text{(95 \% CL, TTTEEE+lowE+lensing+BAO} \end{split}$$

To be compared to the KATRIN bound: $\sum m_{\nu} < 2.4 \,\mathrm{eV}$

Very robust bounds from linear Cosmology $\Delta T/T \sim 10^{-5}$

What about other non-linear cosmological data?

What about possible systematics in the Planck data?

And, all cosmological bounds are cosmological model dependent

What is the dependence upon the assumed Cosmological Model?

Miguel Escudero

Neutrino Cosmology

Data beyond Planck and BAO within ACDM

$\sum m_{\nu} < 0.26 \mathrm{eV}$	Planck	Planck 1807.06209
$\sum m_{\nu} < 0.12 \mathrm{eV}$	Planck+BAO	Planck 1807.06209
$\sum m_{\nu} < 0.86 \mathrm{eV}$	BOSS P(k)	lvanov et al. 1909.05277
$\sum m_{\nu} < 0.16 \mathrm{eV}$	Planck+BOSS P(k)	lvanov et al. 1912.08208
$\sum m_{\nu} < 0.58 \mathrm{eV}$	Lyman- <i>α</i> +H₀prior	Palangue-Delabrouille
$\sum m_{\nu} < 0.10 \mathrm{eV}$	Planck+Lyman- $lpha$	et al. 1911.09073
$\overline{\sum} m_{\nu} < 0.08 \mathrm{eV}$	Planck+BAO+H₀	Choudhury & Hannestad 1907.12598
$\overline{\sum} m_{\nu} < 0.09 \mathrm{eV}$	Planck+BAO+SN+RSD	di Valentino, Gariazzo & Mena 2106.15267

- Planck is driving current cosmological constraints
- Non-linear or mildly non-linear data sets break degeneracies in the fit
- The larger H₀ is, the stronger the constraint on $\sum m_{\nu}$ is (However, this comes from combining two data sets in strong tension!)

Neutrino Cosmology

Neutrino masses and the Planck lensing anomaly

There is an anomaly in the Planck data at high multipoles which could potentially have relevant implications for the neutrino mass constraints

This tension (3σ) is parametrized in terms of the A_L parameter, which is an *unphysical parameter* modifying the amplitude of the lensing spectrum!

Importantly, the Planck collaboration claims that the most likely origin of this tension is a statistical fluctuation:

1807.06209
Planck 2018 results. VI. Cosmological parameters

If the $A_L > 1$ preference is simply a statistical excursion (perhaps the most likely explanation), this indicates that there are random features in the spectrum that are pulling some parameters unusually far from expected values.³⁰ There are several

In addition, more recent analyses of the Planck data do point in that direction:

see Rosenberg, Gratton & Efstathiou 2205.10869

The lower noise of the NPIPE maps leads to tighter parameter constraints, with a ~10% improvement in most Λ CDM parameters in TTTEEE due primarily to improvements in polarization. For Λ CDM extensions we find that, relative to PR3, NPIPE polarization shrinks the error bars on Ω_K and A_L from EE by 40% and 25% respectively, and by 15% and 8% in TTTEEE. That these smaller error bars are accompanied by shifts toward the Λ CDM values continues the trend observed in EG21 of decreasing the Ω_K and A_L tensions as more data is used, as would be expected if these pulls were due to a statistical fluctuation. Overall, we conclude that NPIPE, despite

Finally, even in the presence of this anomaly the effect on the neutrino mass bound is expected to be of only 20% within ACDM!

Motloch and Hu 1912.06601

As is well known, the Planck lensing-like anomaly strengthens neutrino mass constraints. When combining Planck data with current BAO and SN data, we find that the lensing-like anomaly improves the neutrino mass constraints by less than 20%. Additionally allowing nonzero curvature further degrades this constraint by only about 10%. We find that when considering either PP or BAO+SN on top of Planck temperature and polarization power spectra, the data are consistent with flat Universe and this preference is not affected by the lensing anomaly.

Cosmological Model Dependence

Planck+BAO and 3 degenerate neutrinos

 $\sum m_{\nu} < 0.12 \,\mathrm{eV}$ **Standard Case** $\Lambda CDM + m_{\nu}$ Planck 1807.06209 $\sum m_{\nu} < 0.25 \,\mathrm{eV}$ **Dark Energy dynamics** $CDM+m_v+\omega_a+\omega$ **Choudhury & Hannestad 19'** $\sum m_{\nu} < 0.15 \,\mathrm{eV}$ **Varying Curvature** $\Lambda CDM + m_{\nu} + \Omega_k$ **Choudhury & Hannestad 19'** $\sum m_{\nu} < 0.13 \,\mathrm{eV}$ Varying N_{eff} ΛCDM+m_v+N_{eff} Planck 1807.06209 $\sum m_{\nu} < 0.17 \,\mathrm{eV}$ Varying $N_{eff}+\omega+\alpha_s+m_v$ $CDM+m_v+N_{eff}+\omega+a_s+m_v$ di Valentino et al. 1908.01391

Constraints are robust upon standard modifications of ΛCDM

Cosmological Model Dependence Non-standard Neutrino Cosmologies:

Invisible Neutrino Decay

 $\nu_i \rightarrow \nu_j \phi$ $\sum m_{\nu} \lesssim 0.2 \,\mathrm{eV}$

Oldengott, Wong et al. 2203.09075 & 2011.01502 Escudero & Fairbairn 1907.05425

 $\nu_i \to \nu_4 \phi$ $\sum m_{\nu} \lesssim 0.42 \,\mathrm{eV}$

Poulin et al. 1909.05275, 2112.13862 Escudero, López-Pavón, Rius & Sandner 2007.04994

Time Dependent Neutrino Masses

Late phase transition

 $\sum m_{\nu} < 1.4 \,\mathrm{eV}$

Dvali & Funcke 1602.03191 Lorenz et al. 1811.01991 & 2102.13618

Ultralight scalar field screening

$$\sum m_{\nu} < 3 \,\mathrm{eV}$$

Esteban & Salvadó 2101.05804 Esteban, Mena & Salvadó 2202.04656

Non-standard Neutrino Populations

 $T_{\nu} < T_{\nu}^{\rm SM} + {\rm DR}$

 $\sum m_{\nu} < 3 \,\mathrm{eV}$

Farzan & Hannestad 1510.02201 Renk et al. 2009.03286

 $< p_{\nu} > > 3.15 T_{\nu}^{SM}$

 $\sum m_{\nu} < 3 \,\mathrm{eV}$

Oldengott et al. 1901.04352 Alvey, Escudero & Sabti 2111.14870

Bounds can significantly loosen in some extensions of ΛCDM. They require modifications to the neutrino sector.

But Why? and How?

Miguel Escudero

Neutrino Cosmology

Frascati 15-07-22

Miguel Escudero

Not only a background effect:

Massive neutrinos also affect CMB lensing lpha $\, \Omega_{
u}$

Miguel Escudero

Neutrino Cosmology

Neutrino Decays

Neutrinos decaying with $\tau_{\nu} \lesssim t_U/10$ do not impact D_M(z_{CMB}) Effect of induced neutrino Lensing is substantially reduced Unstable Neutrinos can relax the bounds on Σm_{ν} !

Miguel Escudero

Neutrino Cosmology

Non-standard Neutrino Cosmologies:

Invisible Neutrino Decay

 $\sum_{i}^{\nu_{i}} \nu_{j} \phi$ $\sum_{\nu} m_{\nu} < 0.2 \,\mathrm{eV}$

Oldengott, Wong et al. 2203.09075 & 2011.01502 Escudero & Fairbairn 1907.05425

 $\nu_i \to \nu_4 \phi$ $\sum m_{\nu} \lesssim 0.42 \,\mathrm{eV}$

Poulin et al. 1909.05275, 2112.13862 Escudero, López-Pavón, Rius & Sandner 2007.04994 **Time Dependent Neutrino Masses**

Late phase transition

 $\sum m_{\nu} < 1.4 \,\mathrm{eV}$

Dvali & Funcke 1602.03191 Lorenz et al. 1811.01991 & 2102.13618

Ultralight scalar field screening

$$\sum m_{\nu} < 3 \,\mathrm{eV}$$

Esteban & Salvadó 2101.05804 Esteban, Mena & Salvadó 2202.04656

Non-standard Neutrino Populations

 $T_{\nu} < T_{\nu}^{\rm SM}$

 $\sum m_{\nu} < 3 \,\mathrm{eV}$

Farzan & Hannestad 1510.02201 Renk et al. 2009.03286

 $\sum m_{\nu} < 3 \,\mathrm{eV}$

Oldengott et al. 1901.04352 Alvey, Escudero & Sabti 2111.14870

Take Away Messages:

- Cosmology can only constrain $\Omega_{\nu}(z)$ and not directly m_{ν}
- Of course, in ACDM there is a direct link between $\Omega_{\nu}(z)$ and m_{ν}
- All these models reduce $\Omega_{\nu}(z)$ with respect to the one in ACDM and are in excellent agreement with all known cosmological data
- Importantly, they entail non-standard neutrino properties

Miguel Escudero

Neutrino Cosmology

Riess *et al.* 2112.04510

Local Measurements

 $H_0 = 73.04 \pm 1.04 \,\mathrm{km/s/Mpc}$

Planck 2018 1807.06209

 $H_0 = 67.4 \pm 0.5 \,\mathrm{km/s/Mpc}$

5σ tension within ΛCDM!

ACDM Prediction

The Hubble Law

The Hubble Tension in Perspective

Miguel Escudero

The Hubble Tension in Perspective

The Hubble Tension

The Hubble Tension:

 $H_0 = 73.04 \pm 1.04 \text{ km/s/Mpc}$ $H_0 = 67.4 \pm 0.5 \text{ km/s/Mpc}$

Riess *et al.* 2112.04510

Planck 2018 1807.06209

5σ tension within ΛCDM!

Miguel Escudero

Possible resolutions:

- 1) Systematics in the CMB data
- 2) Systematics in local measurements
- 3) New feature of ΛCDM
- 4) Drastic change to the cosmological paradigm
 - Can we be living in a large void?

This can be tested and data suggests that no: Riess et al. 1901.08681

– Is the Universe isotropic?

Some suggest that no: Sarkar et al. 2206.05624. However, these findings appear to be in disagreement with other studies, see Trotta et al. 2108.12497. In addition, it seems somewhat complicated to arrange theoretically explain it in light of CMB data, see 2207.01569 by Sarkar et al.

Possibilities beyond ΛCDM:

See 2103.01183 by di Valentino et al. for a review (over 1000 references ...)

1) Late Universe Modifications

2) Early Universe Modifications

26

hard but doable

very unlikely

very unlikely

none so far

Why late Universe modifications do not work? see e.g. 2103.08723 by Efstathiou

Because type Ia SN and Baryon Acoustic Oscillations constrain the expansion history of the Universe at z < 2.5 and they agree with the predictions of Λ CDM

Miguel Escudero

Why Early Universe modifications could work? Because the CMB does not measure H_0 directly!

Planck measures the positions of the peaks: $\theta_s \equiv r_s/D_M(z_\star)$

(0.03% precision)

The game is to make r_s smaller by ~8% so that H_0 Model Building task: can be the one reported by Riess. But, not spoiling the fit to ultra precise CMB data from Planck!

simplest:

Knox and Millea 1908.03663

Enhance the expansion history of the **Universe prior and close to recombination!**

Miguel Escudero

Neutrino Cosmology

Hundreds of Models in the market See 2103.01183 by di Valentino et al.

Most of them do not work well. They either lead to a bad CMB fit or do not shift H₀ enough Schöneberg et al. 2107.10291: *The H₀ Olympics: A fair ranking of proposed models*

- Hundreds of Models in the market See 2103.01183 by di Valentino et al.

Most of them do not work well. They either lead to a bad CMB fit or do not shift H₀ enough Schöneberg et al. 2107.10291: *The H₀ Olympics: A fair ranking of proposed models*

Model	ΛN	M	Gaussian	$Q_{\rm DMAP}$		$\Delta \chi^2$	ΔΑΙΟ		Finalist
MOUEI	$\Delta I_{\rm param}$	INIB	Tension	Tension		$\Delta \chi$			1 111/1150
ΛCDM	0	-19.416 ± 0.012	4.4σ	4.5σ	X	0.00	0.00	X	X
$\Delta N_{ m ur}$	1	-19.395 ± 0.019	3.6σ	3.9σ	X	-4.60	-2.60	X	X
SIDR	1	-19.385 ± 0.024	3.2σ	3.6σ	X	-3.77	-1.77	X	X
DR-DM	2	-19.413 ± 0.036	3.3σ	3.4σ	X	-7.82	-3.82	X	X
mixed DR	2	-19.388 ± 0.026	3.2σ	3.7σ	X	-6.40	-2.40	X	X
$SI\nu + DR$	3	-19.440 ± 0.038	3.70	3.9σ	X	-3.56	2.44	X	X
Majoron	3	-19.380 ± 0.027	3.0σ	2.9σ	\checkmark	-13.74	-7.74	\checkmark	√ ②
primordial B	1	-19.390 ± 0.018	3.5σ	3.5σ	X	-10.83	-8.83	\checkmark	√ (3)
varying m_e	1	-19.391 ± 0.034	2.9σ	3.2σ	X	-9.87	-7.87	\checkmark	√ (3)
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.7σ	\checkmark	-16.11	-12.11	\checkmark	√ 🧶
EDE	3	-19.390 ± 0.016	3.6σ	1.6σ	\checkmark	-20.80	-14.80	\checkmark	√ ②
NEDE	3	-19.380 ± 0.021	3.2σ	2.0σ	\checkmark	-17.70	-11.70	\checkmark	✓ ②
CPL	2	-19.400 ± 0.016	3.9σ	4.1σ	X	-4.23	-0.23	X	X
PEDE	0	-19.349 ± 0.013	2.7σ	2.0σ	\checkmark	4.76	4.76	X	X
MPEDE	1	-19.400 ± 0.022	3.6σ	4.0σ	X	-2.21	-0.21	X	X
$\rm DM \rightarrow \rm DR + \rm WDM$	2	-19.410 ± 0.013	4.2σ	4.4σ	X	-4.18	-0.18	X	X
$\rm DM \rightarrow \rm DR$	2	-19.410 ± 0.011	4.3σ	4.2σ	X	0.11	4.11	X	X

None of them fully solves the Hubble tension!

A critical review of the best performing models

Schöneberg et al. 2107.10291: The H₀ Olympics: A fair ranking of proposed models

Model	$\Delta N_{ m param}$	M_B	Gaussian Tension	$Q_{\rm DMAP}$ Tension		$\Delta\chi^2$	ΔAIC		Finalist
Majoron	3	-19.380 ± 0.027	3.0σ	2.9σ	\checkmark	-13.74	-7.74	\checkmark	√ ②
primordial B	1	-19.390 ± 0.018	3.5σ	3.5σ	X	-10.83	-8.83	\checkmark	√ ③
varying m_e	1	-19.391 ± 0.034	2.9σ	3.2σ	X	-9.87	-7.87	\checkmark	√ ③
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.7σ	\checkmark	-16.11	-12.11	\checkmark	 ✓
EDE	3	-19.390 ± 0.016	3.6σ	1.6σ	\checkmark	-20.80	-14.80	\checkmark	√ ②
NEDE	3	-19.380 ± 0.021	3.2σ	2.0σ	\checkmark	-17.70	-11.70	\checkmark	✓ ②

Primordial magnetic fields & $m_e(t) + \Omega_k$

The idea here is that recombination happens earlier than in ACDM by either

- a) using primordial magnetic fields of ~ 1 nGauss on kpc scales [Jedamzik & Pogosian 2004.09487]
- b) enhancing $m_e(t)$ at recombination by ~ 2% [Hart & Chluba 1912.03986]

Good exercises, not much theoretical motivation for $m_e(t)$ but maybe yes for B fields!

Early Dark Energy Poulin, Smith, Karwal, Kamionkowski 1811.04083 Agrawal, Cyr-Racine, Pinner, Randall 1904.01016 The idea is that there is an early dark energy component just acting right before recombination This can be done with a very light scalar field with $m_{\phi} \sim 10^{-27} \text{ eV}$ that yields $f_{\text{EDE}} \sim 10\%$ but with a very particular potential: $V_{\phi} \sim m^2 f^2 \left[1 - \cos \phi / f\right]^3 \sim m^2 \phi^6 / f^4$

Bighly unclear where such potential could come from and there is a coincidence problem ...

New Early Dark Energy

Another possibility is to trigger a 1st order phase transition at $T \sim eV$ [Niedermann & Sloth 1910.10739]

It appears rather involved ... Dark gauge sector, DM, neutrinos, inverse seesaw...

see [Niedermann & Sloth 2112.00759, 2112.00770]

Miguel Escudero

Neutrinos and the Hubble Tension

Why Neutrinos?

1) Neutrinos are always a relevant species in the Universe evolution

2) Neutrino masses are the only Laboratory evidence of Physics Beyond the Standard Model

Neutrinos and the Hubble Tension

Dark Radiation

 $\Delta N_{\rm eff} = 0.23 \pm 0.15$

(68 % CL, Planck+BAO+H0)

Clear Interpretation H₀ tension from 4.4σ to 3.6σ CMB fit is degraded

Strong Neutrino Scattering + Dark Radiation Kreisch, Cyr-Racine, Doré 1902.00543

H₀ tension solved if TEEE data is ignored If pol data is included no solution for H₀ Almost excluded by Lab data (Kelly++1905.02727) ACT data seems points to it again 2207.03164

Light Neutrinophilic Scalar + Dark Radiation Escudero & Witte 1909.04044

H₀ tension from 4.4 σ to 2.5 σ CMB fit is not degraded Direct connection with Seesaw Ad hoc $\Delta N_{\rm eff} \sim 0.5$

Primordial population of Majorons Escudero & Witte 2103.03249

Sterile neutrinos can source $\Delta \textit{N}_{eff}^{BBN} \sim 0.4$ Sterile neutrinos can lead to Leptogenesis H_0 tension from 5\sigma to 2.6\sigma

Revisiting the cosmological analysis without many simplifying approximations: <u>Sandner</u>, Escudero & Witte 22'

Miguel Escudero

Neutrino Cosmology

...

e

••

Neutrinos and the Hubble Tension

Early Dark Energy sourced by neutrinos Sakstein & Trodden 1911.11760

Nice way to solve the coincidence problem

Use $\sum m_{\nu} = 1.5 \text{ eV}$ (10% of DM) which can be dangerous But the Cl's have not been calculated yet ...

Some progress has been made Carrillo Go

Carrillo González et al. 2011.09895

••

•••

34

Dark Matter-Neutrino Interactions Ghosh, Khatri & Roy 1908.09843

Nice idea to allow for a large H₀ without an enhanced expansion history Latest analysis done with Planck 2015 data

Rather large interactions needed. Model may be complicated to build!

An eV-scale Sterile Neutrino interacting with a pseudoscalar

Archidiacono, Gariazzo, Giunti, Hannestad, Tram 2006.12885

Clearly motivated by short-baseline neutrino experiments Nice idea to try to avoid the cosmo problems with $m_s \sim eV$ The Hubble Tension could be solved if $\Delta N_{eff} = 1$

But that leads to a very bad CMB fit $\Delta \chi^2 = 13 - 32$

Common features of all approaches: An enhanced expansion history and new interactions

Miguel Escudero

Neutrino Cosmology

Summary I: Neutrino Masses

Neutrino Masses:

Cosmological bounds are very stringent within the standard cosmological model, ΛCDM:

$$\sum m_{\nu} < 0.12 \,\mathrm{eV}$$

However, all cosmological neutrino mass bounds are cosmological model dependent

There are several non-standard cosmologies where this bound can be evaded. *These models are exotic*, but current data cannot differentiate them wrt ΛCDM

Outlook I: Neutrino Masses

The next generation of galaxy surveys in combination with CMB data are expected to measure the neutrino mass if the Universe is governed by a ΛCDM cosmology.

DESI

EUCLID

This is expected to happen in the next 5-7 years: $\sigma(\sum m_{\nu}) = 0.02$

In parallel, the KATRIN experiment is taking data and should reach a sensitivity of $m_{\bar{\nu}_e} \lesssim 0.2 \,\mathrm{eV}$ at 90% CL in ~ 4 years.

Miguel Escudero

Neutrino Cosmology

Summary II: The Hubble Tension

1) Observational evidence

There is strong observational evidence from Cepheids+SNIa

However, it is still just a tension. It needs to be confirmed by other methods

We expect significant improvements in ~3-4 years, particularly with upcoming data from Gaia & the James Webb telescope

2) Theoretical modeling

Despite the strong efforts, we have no perfect model so far

Most of the models lack theoretical motivation

3) Neutrinos and the Hubble Tension

There are many models involving neutrinos to solve the H₀ tension.

They require new interactions and an enhanced expansion history but none is able to fully solve the H₀ tension.

Miguel Escudero

Neutrino Cosmology

Summary of the Lectures

Neutrinos in the SM:

Summary of the Lectures

Current knowledge:

Miguel Escudero

Summary of the Lectures

In the next 5-6 years:

Miguel Escudero

Global Perspective

I think we are living exciting times in Cosmology

In particular in Neutrino Cosmology: We expect to detect the neutrino mass in 5-6 years!

End of Lecture II

Thank you for your attention!

miguel.escudero@tum.de

Miguel Escudero

Neutrino Cosmology

Precisely today there is a workshop in honor of the memory of Ann E. Nelson:

Ann Nelson passed away 3 years ago in a climbing accident

Who was she?

A role model

A leader of the community

An outstanding theoretical physicist e.g.: Sakurai Prize winner 2018!

For comments from the community see:

https://physicstoday.scitation.org/do/10.1063/pt.6.4.20190808a/full/

including David B. Kaplan, Howard Georgi, Lisa Randall, Nima Arkani-Hamed, Michael Dine, Kathryn Zurek & Mary K Gaillard

Miguel Escudero

Neutrino Cosmology

Some of Ann's contributions:

Solving the Strong	Naturally Weak C	P Violation	#10						
CP problem with	Ann E. Nelson (Harva	rd U.) (Dec, 1983)							
spontaneous CP violation	Published in: Phys.Le	<i>tt.B</i> 136 (1984) 387-391	→ 391 citations						
	The Littlest Higg	S	#3						
Little Higgs:	N. Arkani-Hamed (Harvard U., Phys. Dept.), A.G. Cohen (Boston U.), E. Katz (Washington U., Seattle), A.E. Nelson (Washington U., Seattle) (Jun, 2002)								
	Published in: JHEP 0	7 (2002) 034 • e-Print: hep-ph/0206021 [hep-ph]							
IR-UV	Effective field the	eory, black holes, and the cosmological consta	nt #4						
connections	Andrew G. Cohen (Boston U.), David B. Kaplan (Washington U., Seattle), Ann E. Nelson (Washington U., Seattle) (Mar, 1998)								
in gravity	Published in: Phys.Re	[hep-th] → 1,125 citations							
Dynamical	Dynamical super	symmetry breaking at low-energies	#9						
SUSY	Michael Dine (UC, Sa	nta Cruz), Ann E. Nelson (UC, San Diego) (Mar, 1993)							
breaking	Published in: Phys.Re	p-ph]							
Flootrowook	Progress in elect	roweak baryogenesis	#10						
Barvogenesis	Andrew G. Cohen (Boston U.), D.B. Kaplan (UC, San Diego), A.E. Nelson (UC, San Diego) (Jan, 1993)								
Baryogenesis	Published in: Ann.Re	10 [hep-ph] → 1,004 citations							
Dark Energy- Neutrino	Dark energy from	n mass varying neutrinos	#1						
	Rob Fardon (Washington U., Seattle, Astron. Dept.), Ann E. Nelson (Washington U., Seattle, Astron. Dept.), Neal Weiner (Washington U., Seattle, Astron. Dept.) (Sep, 2003)								
Connection!	Published in: JCAP 1	0 (2004) 005 • e-Print: astro-ph/0309800 [astro-ph]	→ 398 citations						
Miguel Escu	dero	Neutrino Cosmology	Frascati 15-07-22 44						

How did I met Ann?

She gave an amazing seminar at Fermilab about Baryogenesis in 2017. I thought, wow, that's who I would like to be when I am old!

I got funding to visit her and so I did for a month in April 2018

We wrote a paper about a very ambitious Baryogenesis and Dark Matter mechanism using a naturally occurring CP violating system in the Standard Model: the neutral B meson system:

Baryogenesis and dark matter from B mesons

Gilly Elor,^{1,*} Miguel Escudero,^{2,3,†} and Ann E. Nelson^{1,‡}

¹Department of Physics, Box 1560, University of Washington, Seattle, Washington 98195, USA ²Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom ³Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Paterna E-46071, Valencia, Spain

My experience at the UW with her was incredibly illuminating. She was the most brilliant physicist I have ever met, but also a very generous, inclusive and friendly person.

We deeply miss her

Miguel Escudero

Neutrino Cosmology

Motivation, Method and Philosophy

Ann E. Nelson (1958-2019)

A sentence from her "<u>Commentary: Diversity</u> in physics: Are you part of the problem?" in Physics Today that I find very motivating:

I often get asked, "Why are there so few women in physics?" That anyone would ask that question shows how oblivious many people are to the sexism and bias that permeate our society and physics culture. I may not be able to fully answer the question, but I can tell you why there are women like me in physics. Because we love math and nature. Because we like doing computations and figuring things out, step by systematic step. We love the flashes of insight and the excitement of revelations from new data. We revel in breathtaking moments of awe. And we had support, mentors, encouragement, opportunities, and colleagues who gave us a positive view of ourselves as physicists.

Miguel Escudero

Neutrino Cosmology