# QCD and Jets at Colliders 

## Matteo Cacciari

LPTHE Paris and Université Paris Cité

Lecture I: QCD and perturbative calculations and tools Lecture 2: Jet algorithms and substructure


A hadron collider event
[NB. NOT to scale!]

## Strong interactions are complicated



## Predictions

"We are driven to the conclusion that the Hamiltonian method for strong interactions is dead and must be buried, although of course with deserved honor"

Lev Landau
"The correct theory [of strong interactions] will not be found in the next hundred years"

Freeman Dyson
We have come a long way towards disproving these predictions

## Bibliography

## Books and "classics"...

- T. Muta, Foundations of Quantum Chromodynamics, World Scientific (1987)
- R.D. Field, Applications of perturbative QCD,Addison Wesley (I989)

Great for specific examples of detailed calculations

- R.K. Ellis,W.J. Stirling and B.R.Webber, QCD and Collider Physics, Cambridge University Press (1996)

Phenomenology-oriented

- G. Sterman, An Introduction to Quantum Field Theory, Cambridge University Press (1993) A QFT book, but applications tilted towards QCD
- Dokshitzer, Khoze, Muller, Troyan, Basics of perturbative QCD, http://www.lpthe.jussieu.fr/~yuri
- Dissertori, Knowles, Schmelling, Quantum Chromodynamics: High Energy Experiments and Theory, Oxford Science Publications
- Campbell, Huston, Krauss, The Black Book of Quantum Chromodynamics, Oxford University Press

Perhaps the most recent QCD book

- M.L. Mangano, Introduction to QCD, http://doc.cern.ch//archive/cernrep//l999/99-04/p53.pdf
- S. Catani, Introduction to QCD, CERN Summer School Lectures 1999


## Bibliography

## ...and more recent lectures, slides and...videos

- Gavin Salam,
"Elements of QCD for Hadron Colliders", http://arxiv.org/abs/arXiv:1011.5131
- http://gsalam.web.cern.ch/gsalam/teaching/PhD-courses.html
- Peter Skands

20I5 CERN-Fermilab School lectures, http://skands.physics.monash.edu/slides/

- "Introduction to QCD", http://arxiv.org/abs/arXiv:I207.2389
- Fabio Maltoni
"QCD and collider physics", GGI lectures, https://www.youtube.com/playlist?list=PLI CFLtxelrQqvt-e8C5pwBKG4PljSyouP
- Search YouTube for "GGI Thaler","GGI Soyez","GGI Catani" "GGI Peskin"
- Search You Tube/web for "ICTP particle physics summer school"


## QED v. QCD

QED has a wonderfully simple lagrangian, determined by local gauge invariance

$$
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi-e \bar{\psi} \not A \psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

In the same spirit, we build QCD:
a non abelian local gauge theory, based on $\mathrm{SU}(3)$ colour, with 3 quarks (for each flavour) in the fundamental representation of the group and 8 gluons in the adjoint


## What's new?

## I. Colour



## What's new?

## 2. Gauge bosons self couplings

In QCD the gluons interact among themselves:

$$
\begin{gathered}
\mathcal{L}_{Y M}=-\frac{1}{4} \sum_{a} F_{\mu \nu}^{a} F^{a \mu \nu} \\
F_{\mu \nu}^{a}=\partial_{\mu} A_{v}^{a}-\partial_{v} A_{\mu}^{a}+g f^{a b c} A_{\mu}^{b} A_{v}^{c}
\end{gathered}
$$

$$
=g f^{f^{d c}\left[g^{a s}(p-q)^{\gamma}+g^{q \gamma}(q-r)^{\alpha}+g^{\alpha a}(r-p)^{\beta}\right]}
$$

New Feynman diagrams, in addition to the 'standard' QED-like ones
Direct consequence of non-abelianity of theory

## What's new?

## 3. Need for ghosts

Cancel unphysical degrees of freedom that would otherwise propagate in covariant gauges


Table 1: Feynman rules for QCD in a covariant gauge.

## Macroscopic differences

I. Confinement (probably -- no proof in QCD) We never observe the fundamental degrees of freedom (quarks and gluons). They are always confined into hadrons.

## 2. Asymptotic Freedom

The running coupling of the theory, $\alpha_{s}$, decreases at large energies


## QCD radiation

Start with $\gamma^{*} \rightarrow q \bar{q}:$

$$
\mathcal{M}_{q \bar{q}}=-\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} v\left(p_{2}\right)
$$



Emit a gluon:

In the soft limit , $k \ll \operatorname{PI}, 2$

$$
\mathcal{M}_{q \bar{q} g} \simeq \bar{u}\left(p_{1}\right) e_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right) g_{s}\left(\frac{p_{1} \cdot \epsilon}{p_{1} \cdot k}-\frac{p_{2} \cdot \epsilon}{p_{2} \cdot k}\right)
$$

## QCD radiation

## Squared amplitude, including phase space

$$
\begin{aligned}
& d \Phi_{q \bar{q} \bar{g}}\left|M_{q \bar{q} g}^{2}\right| \simeq\left(d \Phi_{q \bar{q} \mid}\left|M_{q \bar{q}}^{2}\right|\right) \frac{d^{3} \vec{k}}{2 E(2 \pi)^{3}} C_{F g_{S}^{2}}^{\left(\frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}\right.} \\
& \text { Factorisation: Born } \times \text { radiation }
\end{aligned}
$$

Changing variables (use energy of gluon $E$ and emission angle $\theta$ ) we get

$$
d \mathcal{S}=\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d E}{E} \frac{d \theta}{\sin \theta} \frac{d \phi}{2 \pi}
$$ for the radiation part

## QCD emission probability



$$
\frac{d P_{k \rightarrow i j}}{d E_{i} d \theta_{i j}} \sim \frac{\alpha_{s}}{\min \left(E_{i}, E_{j}\right) \theta_{i j}}
$$

Singular in the soft $\left(\mathrm{E}_{\mathrm{i}, \mathrm{j}} \rightarrow 0\right)$ and in the collinear $\left(\theta_{\mathrm{ij}} \rightarrow 0\right)$ limits. Logarithmically divergent upon integration

The divergences can be cured by the addition of virtual corrections and/or if the definition of an observable is appropriate

## Altarelli-Parisi kernel

Using the variables $\mathrm{E}=(\mathrm{I}-\mathrm{z}) \mathrm{p}$ and $\mathrm{k}_{\mathrm{t}}=\mathrm{E} \theta$ we can rewrite

$$
\begin{gathered}
d \mathcal{S}=\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d E}{E} \frac{d \theta}{\sin \theta} \frac{d \phi}{2 \pi} \rightarrow \frac{\alpha_{s} C_{F}}{\pi} \frac{1}{1-z} d z \frac{d k_{t}^{2}}{k_{t}^{2}} \frac{d \phi}{2 \pi} \\
\text { 'almost' the Altarelli-Parisi } \\
\text { splitting function } \mathrm{P}_{\mathrm{qq}}
\end{gathered}
$$

## Massive quarks

If the quark is massive the collinear singularity is screened

$$
\frac{\alpha_{s} C_{F}}{\pi} \frac{1}{1-z} d z \frac{d k_{t}^{2}}{k_{t}^{2}} \frac{d \phi}{2 \pi} \rightarrow \frac{\alpha_{s} C_{F}}{\pi} \frac{1}{1-z} d z \frac{d k_{t}^{2} /}{k_{t}^{2}+(1-z)^{2} m^{2}} \frac{d \phi}{2 \pi}+\cdots
$$



## $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons

Easiest higher order calculation in QCD. Calculate $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{qqbar}+X$ in pQCD

Born

$\alpha_{s}{ }^{0}$

Virtual

Real

$\alpha_{s}{ }^{\prime}$

## $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons

Regularize with dimensional regularization, expand in powers of $\varepsilon$

$$
\begin{gathered}
\sigma^{q \bar{q} g}=2 \sigma_{0} \frac{\alpha_{\mathrm{S}}}{\pi} H(\epsilon)\left[\frac{2}{\epsilon^{2}}+\frac{3}{\epsilon}+\frac{19}{2}-\pi^{2}+\mathcal{O}(\epsilon)\right] \\
\sigma^{q \bar{q}}=3 \sigma_{0}\left\{1+\frac{2 \alpha_{\mathrm{S}}}{3 \pi} H(\epsilon)\left[-\frac{2}{\epsilon^{2}}-\frac{3}{\epsilon}-8+\pi^{2}+\mathcal{O}(\epsilon)\right]\right\} \text { Virtual } \\
R=3 \sum_{q} Q_{q}^{2}\left\{1+\frac{\alpha_{\mathrm{S}}}{\pi}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{2}\right)\right\} \text { Sum }
\end{gathered}
$$

Real and virtual, separately divergent, 'conspire' to make total cross section finite

## Cancellation of singularities

The cancellation of real and virtual (infrared) singularities is not accidental

## Block-Nordsieck theorem

IR singularities cancel in sum over soft unobserved photons in final state (formulated for massive fermions $\Rightarrow$ no collinear divergences)

## Kinoshita-Lee-Nauenberg theorem

 IR and collinear divergences cancel in sum over degenerate initial and final statesThese theorems suggest that the observable must be crafted in a proper way for the cancellation to take place

## A mine of QCD information



Running of $\alpha_{s}$, and its renormalisation group equation

## Scale dependence

When renormalisation (or factorisation) becomes necessary, perturbative calculations end up depending on artificial scales



The cross section prediction varies with the renormalisation scale choice. Which value do we pick for $\mu$ ?

## Theoretical uncertainties

$\mu$ cannot be fixed exactly, and only a physical cross section (and not its perturbative approximation) would be completely independent of $\mu$

$$
\frac{d}{d \ln \mu^{2}} \sigma^{p h y s}=0
$$

In real life: residual dependence at one order higher than the calculation
$\frac{d}{d \ln \mu^{2}} \sum_{p=1}^{N} c_{p}(\mu) \alpha_{s}^{p}(\mu) \sim \mathcal{O}\left(\alpha_{s}^{N+1}\right)$


Vary scales (around a physical one) to ESTIMATE the uncalculated higher orders

## Nota bene

In a perturbative calculation $\sum_{p=1}^{N} c_{p}(\mu) \alpha_{s}^{p}(\mu)$ the coefficients $c_{p}(\mu)$ have the form

$$
c_{p}(\mu)=c_{p 0}+\sum_{k=1}^{p-1} c_{p k} \ln ^{k} \mu
$$

The coefficients $c_{p k}$, with $k \geq 1$, can be obtained from the lower order coefficients $c_{n}(\mu)$ with $n<p$.

$$
\text { E.g. } \quad R\left(\alpha_{s}\left(\mu^{2}\right), \mu^{2} / s\right)=R_{0}\left[1+\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}+\left(c_{20}+\pi b_{0} \ln \frac{\mu^{2}}{s}\right)\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}\right)^{2}+\mathcal{O}\left(\alpha_{s}^{3}\right)\right]
$$

The only genuine higher order prediction is $c_{p 0}$. The other coefficients ensure cancellation of the scale dependence at order N

If you get the $c_{p 0}$ wrong, but obtain the other coefficients from lower order calculations, you still get a reduction in scale dependence even if your calculation is incorrect

## Non-perturbative contributions

We have calculated $\sum \sigma\left(e^{+} e^{-} \rightarrow q \bar{q}\right)$ in perturbative QCD

## However

$$
\sum \sigma\left(e^{+} e^{-} \rightarrow q \bar{q}\right) \neq \sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)
$$

The (small) difference is due to hadronisation corrections, and is of non-perturbative origin

We cannot calculate it in PQCD, but in some cases we can get an idea of its behaviour from the incompleteness of pQCD itself

## Renormalons

Suppose we keep calculating to higher and higher orders:

$$
\rightarrow \alpha_{s}^{n+1} \beta_{0 f}^{n} n!\quad \begin{gathered}
\text { Factorial } \\
\text { growth }
\end{gathered}
$$

This is big trouble: the series is not convergent, but only asymptotic

$$
R_{n}
$$

Evidence: try summing

$$
\begin{gathered}
R=\sum_{n=0}^{\infty} \alpha^{n} n! \\
(\alpha=0.1)
\end{gathered}
$$




## Power corrections

The renormalons signal the incompleteness of perturbative QCD

One can only define what the sum of a perturbative series is
(like truncation at the minimal term)

The rest is a genuine ambiguity, to be eventually lifted by non-perturbative corrections:

$$
R^{\text {true }}=R^{p Q C D}+R^{N P}
$$

In QCD these non-perturbative corrections take the form of power suppressed terms:

$$
R^{N P} \sim \exp \left(-\frac{p}{\beta_{0} \alpha_{s}}\right)=\exp \left(-p \ln \frac{Q^{2}}{\Lambda^{2}}\right)=\left(\frac{\Lambda^{2}}{Q^{2}}\right)^{p}
$$

The value of $p$ depends on the process, and can sometimes be predicted by studying the perturbative series: pQCD - NP physics bridge

## Event shapes

## Perturbative (and NP) QCD predictions



Power corrections models (i.e. Monte Carlo hadronisation) can be built and tested on data

## pQCD calculations: hadrons

Turn hadron production in e+e- collisions around: Drell-Yan.


Still easy in Parton Model: just a convolution of probabilities

$$
\begin{aligned}
\frac{d \sigma_{N N \rightarrow \mu \bar{\mu}+X}\left(Q, p_{1}, p_{2}\right)}{d Q^{2} d \ldots} & \sim \int d \xi_{1} d \xi_{2} \sum_{a=\mathrm{q} \overline{\mathrm{q}}} \frac{d \sigma_{\mathrm{a} \overline{\mathrm{a}} \rightarrow \mu \bar{\mu}}^{\mathrm{EW}, \text { Born }}\left(Q, \xi_{1} p_{1}, \xi_{2} p_{2}\right)}{d Q^{2} d \ldots} \\
& \times\left(\text { probability to find parton } \mathrm{a}\left(\xi_{1}\right) \text { in } N\right) \\
& \times\left(\text { probability to find parton } \overline{\mathrm{a}}\left(\xi_{2}\right) \text { in } N\right)
\end{aligned}
$$

This isn't anymore an inclusive process as far as hadrons are concerned: I find them in the initial state, I can't 'sum over all of them'

Still, the picture holds at tree level (parton model)
The parton distribution functions can be roughly equated to those extracted from DIS


# Challenges in QCD 

The non-inclusiveness of a general strong interaction process is a threat to calculability.

What do we do if we can't count on Bloch-Nordsieck and Kinoshita-Lee-Nauenberg?

QCD calculations adopt two strategies:

- Infrared and collinear safe observables
- less inclusive but still calculable in pQCD
- Factorisation
trade divergencies for universal measurable quantities


## IRC safety

A generic (not fully inclusive) observable $O$ is infrared and collinear safe if

$$
\begin{aligned}
& O\left(X ; p_{1}, \ldots, p_{n}, p_{n+1} \rightarrow 0\right) \rightarrow O\left(X ; p_{1}, \ldots, p_{n}\right) \\
& O\left(X ; p_{1}, \ldots, p_{n} \| p_{n+1}\right) \rightarrow O\left(X ; p_{1}, \ldots, p_{n}+p_{n+1}\right)
\end{aligned}
$$

Infrared and collinear safety demands that, in the limit of a collinear splitting, or the emission of an infinitely soft particle, the observable remain unchanged

## IRC safety: proof

Cancellation of singularities in total cross

$$
\sigma_{t o t}=\int_{n}\left|M_{n}^{B}\right|^{2} d \Phi_{n}+\int_{n}\left|M_{n}^{V}\right|^{2} d \Phi_{n}+\int_{n+1}\left|M_{n+1}^{R}\right|^{2} d \Phi_{n+1}
$$ section (KLN)

## A generic observable

$$
\begin{aligned}
\frac{d O}{d X} & =\int_{n}\left|M_{n}^{B}\right|^{2} O\left(X ; p_{1}, \ldots, p_{n}\right) d \Phi_{n} \\
& +\int_{n}^{\left|M_{n}^{V}\right|^{2} O\left(X ; p_{1}, \ldots, p_{n}\right) d \Phi_{n}+\int_{n+1}\left|M_{n+1}^{R}\right|^{2} O\left(X ; p_{1}, \ldots, p_{n}, p_{n+1}\right) d \Phi_{n+1}}
\end{aligned}
$$

In order to ensure the same cancellation existing in $\sigma_{\text {tot }}$, the definition of the observable must not affect the soft/collinear limit of the real emission term, because it is there that the real/virtual cancellation takes place

## Example of IRC-safe observable

## Thrust

$$
T=\max _{\mathbf{n}} \frac{\sum_{i}\left|\mathbf{p}_{i} \cdot \mathbf{n}\right|}{\sum_{i}\left|\mathbf{p}_{i}\right|}
$$

- If a $\mathbf{p}_{i} \rightarrow 0$ (i.e. soft limit) it does not contribute to the sum $\Rightarrow T$ is unchanged $\Rightarrow \mathrm{OK}$
- If a $\mathbf{p}_{i} \rightarrow(1-\lambda) \mathbf{p}_{i}+\lambda \mathbf{p}_{i}$ (i.e. collinear splitting) then
- In the numerator

$$
\left|(1-\lambda) \mathbf{p}_{i} \cdot \mathbf{n}\right|+\left|\lambda \mathbf{p}_{i} \cdot \mathbf{n}\right|=(1-\lambda)\left|\mathbf{p}_{i} \cdot \mathbf{n}\right|+\lambda\left|\mathbf{p}_{i} \cdot \mathbf{n}\right|=\left|\mathbf{p}_{i} \cdot \mathbf{n}\right|
$$

- In the denominator

$$
\begin{aligned}
& \left|(1-\lambda) \mathbf{p}_{i}\right|+\left|\lambda \mathbf{p}_{i}\right|=(1-\lambda)\left|\mathbf{p}_{i}\right|+\lambda\left|\mathbf{p}_{i}\right|=\left|\mathbf{p}_{i}\right| \\
& \Rightarrow T \text { is unchanged } \Rightarrow \mathrm{OK}
\end{aligned}
$$

## Examples of IRC-unsafety

- Multiplicity (e.g. of gluons) is soft unsafe
- One can always emit an additional infinitely soft particle, or split collinearly another, while conserving energy and momentum
- The hardest particle in an event is collinear unsafe


Hardest is 2


Hardest is I

Note that IRC safety is a requirement for perturbative calculability. We can observe the hardest particle in an event, as we can count the number of pions. But we can't calculate their cross sections perturbatively

## Drell-Yan: factorisation

Non fully inclusive process (hadrons in initial state): non cancellation of collinear singularities in PQCD

Same procedure used for renormalising the coupling: reabsorb the divergence into bare non-perturbative quantities, the parton probabilities (collinear factorisation)

## The factorisation theorem



Parton Distribution factorisation Function scale cross section
and (schematically)

$$
F(\mu)=F^{\text {bare }}\left(1+\alpha_{S} P \log \frac{\mu^{2}}{\mu_{0}^{2}}\right) \longrightarrow \underset{\substack{\text { This factor } \\ \text { universal }}}{\text { Summer School - July } 2022}
$$

## Drell-Yan: NLO result

$$
\frac{d^{2} \hat{\sigma}_{q \bar{q} \rightarrow \gamma^{*} g}^{(1)}\left(z, Q^{2}, \mu^{2}\right)}{d Q^{2}}=\sigma_{0}\left(Q^{2}\right)\left(\frac{\alpha_{s}(\mu)}{\pi}\right)\left\{2\left(1+z^{2}\right)\left[\frac{\ln \left(1+z^{2}\right)}{1-z}\right]_{+} \longrightarrow \begin{array}{l}
\text { soft and } \\
\text { collinear } \\
\text { large log }
\end{array}\right.
$$

A prototype of QCD calculations: many finite terms but, more importantly, a few characteristic large logarithms

In many circumstances and kinematical situations the logs are much more important than the finite terms: hence in pQCD resummations of these terms are often phenomenologically more relevant than a full higher order calculation

## Cascade

## Factorisation

$$
\boldsymbol{\sigma}^{p h y s}=F(\mu) \hat{\mathbf{\sigma}}(\mu)
$$

Evolution

$$
\frac{d}{d \ln \mu^{2}} \ln \sigma^{\text {phys }}=0 \Rightarrow \frac{d \ln \hat{\sigma}(\mu)}{\ln \mu^{2}}=-\frac{d \ln F(\mu)}{\ln \mu^{2}} \stackrel{\partial}{=}-\alpha_{s} P
$$

## Resummation

Solution of evolution equations resums higher order terms Responsible for scaling violations (for instance in DIS structure functions)

# DGLAP equations 

[Dokshitzer, Gribov, Lipatov, Altarelli, Parisi]

$$
\begin{aligned}
& \frac{d f_{q}(x, t)}{d t}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d z}{z}\left[P_{q q}(z) f_{\boldsymbol{q}}\left(\frac{x}{z}, t\right)+P_{q g}(z) f_{g}\left(\frac{x}{z}, t\right)\right] \\
& \frac{d f_{g}(x, t)}{d t}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d z}{z}\left[P_{g q}(z) \sum_{i=q, \bar{q}} f_{i}\left(\frac{x}{z}, t\right)+P_{g g}(z) f_{g}\left(\frac{x}{z}, t\right)\right]
\end{aligned}
$$

The Altarelli-Parisi kernels control the evolution of the Parton Distribution Functions

## Altarelli-Parisi kernels

[Altarelli-Parisi, I977,
Dokshitzer, 1977]

$$
\begin{aligned}
& P_{g g} \rightarrow 2 C_{A}\left\{\frac{x}{(1-x)_{+}}+\frac{1-x}{x}+x(1-x)\right\}+\delta(1-x)\left[\frac{11 C_{A}-2 n_{f}}{6}\right] \\
& P_{q q}(z) \rightarrow\left(\frac{1+z^{2}}{1-z}\right)_{+} \equiv \frac{1+z^{2}}{1-z}-\delta(1-z) \int_{0}^{1} d y\left(\frac{1+y^{2}}{1-y}\right) \\
& P_{q g}=\frac{1}{2}\left[z^{2}+(1-z)^{2}\right] \\
& P_{g q}(z)=C_{F} \frac{1+(1-z)^{2}}{z}
\end{aligned}
$$

Higher orders: Curci-Furmansky-Petronzio (I980), Moch,Vermaseren,Vogt (2004)

## Altarelli-Parisi kernels: NLO

$$
\begin{aligned}
& P_{\mathrm{ps}}^{(1)}(x)=4 C_{F r y}\left(\frac{20}{9} \frac{1}{x}-2+6 x-4 \mathrm{H}_{0}+x^{2}\left[\frac{8}{3} \mathrm{H}_{0}-\frac{56}{9}\right]+(1+x)\left[5 \mathrm{H}_{0}-2 \mathrm{H}_{0,0}\right]\right) \\
& P_{\mathrm{qg}}^{(1)}(x)=4 C_{A} \eta_{\gamma}\left(\frac{20}{9} \frac{1}{x}-2+25 x-2 p_{\mathrm{qg}}(-x) \mathrm{H}_{-1,0}-2 p_{\mathrm{qg}}(x) \mathrm{H}_{1,1}+x^{2}\left[\frac{44}{3} \mathrm{H}_{0}-\frac{218}{9}\right]\right. \\
& \left.+4(1-x)\left[\mathrm{H}_{0,0}-2 \mathrm{H}_{0}+x \mathrm{H}_{1}\right]-4 \zeta_{2} x-6 \mathrm{H}_{0,0}+9 \mathrm{H}_{0}\right)+4 C_{F} n_{\mathrm{g}}\left(2 p _ { \mathrm { qg } } ( x ) \left[\mathrm{H}_{1,0}+\mathrm{H}_{1,1}+\mathrm{H}_{2}\right.\right. \\
& \left.\left.-\zeta_{2}\right]+4 x^{2}\left[\mathrm{H}_{0}+\mathrm{H}_{0,0}+\frac{5}{2}\right]+2(1-x)\left[\mathrm{H}_{0}+\mathrm{H}_{0,0}-2 x \mathrm{H}_{1}+\frac{29}{4}\right]-\frac{15}{2}-\mathrm{H}_{0,0}-\frac{1}{2} \mathrm{H}_{0}\right) \\
& P_{\mathrm{gq}}^{(1)}(x)=4 C_{A} C_{F}\left(\frac{1}{x}+2 p_{\mathrm{gq}}(x)\left[\mathrm{H}_{1,0}+\mathrm{H}_{1,1}+\mathrm{H}_{2}-\frac{11}{6} \mathrm{H}_{1}\right]-x^{2}\left[\frac{8}{3} \mathrm{H}_{0}-\frac{44}{9}\right]+4 \zeta_{2}-2\right. \\
& \left.-7 \mathrm{H}_{0}+2 \mathrm{H}_{0,0}-2 \mathrm{H}_{1} x+(1+x)\left[2 \mathrm{H}_{0,0}-5 \mathrm{H}_{0}+\frac{37}{9}\right]-2 p_{\mathrm{gq}}(-x) \mathrm{H}_{-1,0}\right)-4 C_{F} r_{F}\left(\frac{2}{3} x\right. \\
& \left.-p_{\mathrm{gq}}(x)\left[\frac{2}{3} \mathrm{H}_{1}-\frac{10}{9}\right]\right)+4 C_{F}^{2}\left(p_{\mathrm{gq}}(x)\left[3 \mathrm{H}_{1}-2 \mathrm{H}_{1,1}\right]+(1+x)\left[\mathrm{H}_{0,0}-\frac{7}{2}+\frac{7}{2} \mathrm{H}_{0}\right]-3 \mathrm{H}_{0,0}\right. \\
& \left.+1-\frac{3}{2} \mathrm{H}_{0}+2 \mathrm{H}_{1} x\right) \\
& P_{\mathrm{gg}}^{(1)}(x)=4 C_{A \xi}\left(1-x-\frac{10}{9} p_{\mathrm{gg}}(x)-\frac{13}{9}\left(\frac{1}{x}-x^{2}\right)-\frac{2}{3}(1+x) \mathrm{H}_{0}-\frac{2}{3} \delta(1-x)\right)+4 C_{A}^{2}(27 \\
& +(1+x)\left[\frac{11}{3} \mathrm{H}_{0}+8 \mathrm{H}_{0,0}-\frac{27}{2}\right]+2 p_{\mathrm{gg}}(-x)\left[\mathrm{H}_{0,0}-2 \mathrm{H}_{-1,0}-\zeta_{2}\right]-\frac{67}{9}\left(\frac{1}{x}-x^{2}\right)-12 \mathrm{H}_{0} \\
& \left.-\frac{44}{3} x^{2} \mathrm{H}_{0}+2 p_{\mathrm{gg}}(x)\left[\frac{67}{18}-\zeta_{2}+\mathrm{H}_{0,0}+2 \mathrm{H}_{1,0}+2 \mathrm{H}_{2}\right]+\delta(1-x)\left[\frac{8}{3}+3 \zeta_{3}\right]\right)+4 C_{F} r_{y}\left(2 \mathrm{H}_{0}\right. \\
& \left.+\frac{2}{3} \frac{1}{x}+\frac{10}{3} x^{2}-12+(1+x)\left[4-5 \mathrm{H}_{0}-2 \mathrm{H}_{0,0}\right]-\frac{1}{2} \delta(1-x)\right) \text {. }
\end{aligned}
$$

$$
\begin{gathered}
P_{a b}=\frac{\alpha_{s}}{2 \pi} P^{(0)}+ \\
\frac{\alpha_{s}^{2}}{16 \pi^{2}} P^{(1)}
\end{gathered}
$$

Curci, Furmanski \& Petronzio '80

## Altarelli-Parisi kernels: NNLO





NNLO, $P_{a b}^{(2)}$ : Moch, Vermaseren \& Vogt '04

## DGLAP evolution of PDFs



Evolution (i.e. higher momentum scale) produces more partons at small momentum fraction (because they lose energy by radiating)

As for the coupling, one can't predict PDF's values in PQCD, but only their evolution

## Take-home points

- universal character of soft/collinear emission
- both real and virtual diagrams usually contribute to an observable (and are both needed to cancel divergencies)
- not everything is perturbatively calculable. Restrict to IRCsafe observables and/or employ factorisation
- Factorisation leads to resummation


## Ingredients and tools



- PDFs
- Hard scattering and shower
- Final state tools


# (Higher order) calculations 

## What goes into them ?

(Very superficial and schematic presentation of their structure and of some of the tools, and no pretence of actually explaining how to do things)

Nomenclature

$$
P=\square \quad \begin{gathered}
\text { some } \\
P_{11}=\square+1 e=\square \\
\text { single } \\
\text { sore } \\
\text { correction }
\end{gathered}
$$

N.B.

$$
P+1 e \neq P+1 j e t
$$

$\qquad$
$e \stackrel{o r}{e \mathrm{eg}}$

$$
P+1 e=\square
$$

Contribertes to:

$$
P+1 j e t
$$

$$
P+X
$$


or $\square$ $\left(\begin{array}{l}\text { if } e \text { is } \\ \text { integueted over) }\end{array}\right.$

## Process $P$ exact at LO, nothing else



## Process $\mathrm{P}+\mathrm{lj}$ exact at LO, nothing else



## Process $P$ exact at NLO, $\mathrm{P}+\mathrm{lj}$ exact at LO, nothing else



## Process P exact at NLO, $\mathrm{P}+\mathrm{lj}$ exact at LO, nothing else



## Process P and $\mathrm{P}+\mathrm{lj}$ exact at $\mathrm{NLO}, \mathrm{P}+2 \mathrm{j}$ at LO



## Process $P$ exact at NNLO, $\mathrm{P}+\mathrm{lj}$ exact at $\mathrm{NLO}, \mathrm{P}+2 \mathrm{j}$ at LO

Additional<br>as powers

Additional QCD loops K

Absent
PS approx
Exact

## Process $P$ exact at NNLO, $\mathrm{P}+\mathrm{lj}$ exact at $\mathrm{NLO}, \mathrm{P}+2 \mathrm{j}$ at LO

Interferences down the "equal final state" lines

Additional
גs powers

Additional QCD loops
K

Absent
PS approx
Exact

## Tools for the hard scattering

## Can be divided in

## - Integrators

- evaluate the (differential) cross section by integrating the calculation over the phase space, yielding (partly) inclusive quantities
- Produce weighted events (the weight being the value of the cross section)
- Calculations exist at LO, NLO, NNLO, NNNLO
- Generators
- generate fully exclusive configurations
- Events are unweighted (i.e. produced with the frequency nature would produce them)
- Easy at LO, get complicated when dealing with higher orders


## Fixed order calculation

## Born

$$
d \sigma^{B o r n}=B\left(\Phi_{B}\right) d \Phi_{B}
$$

## NLO

$$
d \sigma^{N L O}=\left[B\left(\Phi_{B}\right)+V\left(\Phi_{B}\right)\right] d \Phi_{B}+R\left(\Phi_{R}\right) d \Phi_{R}
$$

Problem:
$V\left(\Phi_{\mathrm{B}}\right)$ and $\int \mathrm{Rd} \Phi_{\mathrm{R}}$ are divergent


## Subtraction terms

An observable $O$ is infrared and collinear safe if
$O\left(\Phi_{\mathrm{R}}\left(\Phi_{\mathrm{B}}, \Phi_{\mathrm{rad}}\right)\right) \rightarrow O\left(\Phi_{\mathrm{B}}\right)$
Soft or collinear limit

One can then write, with $R \rightarrow C$ in the soft/coll limit,
This integration
performed analytically

$$
\langle O\rangle=\int\left[B\left(\Phi_{B}\right)+\widehat{V\left(\Phi_{B}\right)+\int C\left(\Phi_{R}\right) d \Phi_{r a d}}\right] O\left(\Phi_{B}\right) d \Phi_{B}
$$

This (or a similar) cancellation will always be implicit in all subsequent equations

## Parton Shower Monte Carlo

Exploit factorisation property of soft and collinear radiation

Factorisation $\sigma_{n} \quad \sigma_{n+1}$

$$
\mathrm{d} \sigma_{n+1}\left(\Phi_{n+1}\right)=\mathcal{P}\left(\Phi_{\mathrm{rad}}\right) \mathrm{d} \sigma_{n}\left(\Phi_{n}\right) \mathrm{d} \Phi_{\mathrm{rad}}
$$

Emission probability

$$
\mathcal{P}\left(\Phi_{\mathrm{rad}}\right) \mathrm{d} \Phi_{\mathrm{rad}} \approx \frac{\alpha_{\mathrm{S}}(q)}{\pi} \frac{\mathrm{d} q}{q} P(z, \phi) \mathrm{d} z \frac{\mathrm{~d} \phi}{2 \pi}
$$

Iterate emissions to generate higher orders (in the soft/collinear approximation)

## Parton Shower MC

## Based on the iterative emission of radiation described in the soft-collinear limit

$d \sigma^{(M C)}\left(\Phi_{R}\right) d \Phi_{R}=B\left(\Phi_{B}\right) d \Phi_{B} \mathcal{P}\left(\Phi_{\text {rad }}\right) d \Phi_{\text {rad }}$

Pros: soft-collinear radiation is resummed to all orders in pQCD
Cons: hard large-angle radiation is missing

Overall accuracy will be leading log (LL) for the radiation, and leading order (i.e. Born) for the integrated cross sections

## Sudakov form factor

A key ingredient of a parton shower Monte Carlo:

## Sudakov form factor $\Delta\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)$

Probability of no emission between the scales $t_{1}$ and $t_{2}$

Example:

- decay probability per unit time of a nucleus $=\mathrm{C}_{\mathrm{N}}$
- Sudakov form factor $\Delta\left(\mathrm{t}_{0}, \mathrm{t}\right)=\exp \left(-\mathrm{ch}_{\mathrm{N}}\left(\mathrm{t}-\mathrm{t}_{0}\right)\right)$

Probability that nucleus does not decay between $t_{0}$ and $t$

## Sudakov form factor: derivation

Decay probability per unit time $=\frac{d P}{d t}=c_{N}$

Probability of no decay between $\mathrm{t}_{0}$ and $\mathrm{t}=\Delta\left(\mathrm{t}_{0}, \mathrm{t}\right)$
$\Rightarrow$ Probability of decay between $\mathrm{t}_{0}$ and $\mathrm{t}=\mathrm{I}-\Delta(\mathrm{t}, \mathrm{t})$
[with $\left.\Delta\left(\mathrm{t}_{0}, \mathrm{t}_{0}\right)=\mathrm{I}\right]$
[unitarity: either you decay or you don't]

Decay probability per unit time at time $\mathbf{t}$ can be written in two ways:

$$
\begin{aligned}
& \text { 1. } P^{\mathrm{dec}}(t)=\frac{d}{d t}\left(1-\Delta\left(t_{0}, t\right)\right)=-\frac{d \Delta\left(t_{0}, t\right)}{d t} \\
& \text { 2. } P^{\text {dec }}(t)=\Delta\left(t_{0}, t\right) \frac{d P}{d t} \quad \begin{array}{l}
\text { No decay until t, probability per } \\
\text { unit time to decay at } \mathrm{t}
\end{array}
\end{aligned}
$$

## Sudakov form factor: derivation

Equating the two expressions for $\operatorname{Pdec}(\mathrm{t})$ we get

$$
-\frac{d \Delta\left(t_{0}, t\right)}{d t}=\Delta\left(t_{0}, t\right) \frac{d P}{d t}
$$

We can solve the differential equation using $d P / d t=c_{N}$ and we get

$$
\Delta\left(\mathrm{t}_{0}, \mathrm{t}\right)=\exp \left(-\mathrm{c}_{\mathrm{N}}\left(\mathrm{t}-\mathrm{t}_{0}\right)\right)
$$

If the decay probability depends on $t$ (and possibly other variables, call them $z$ ) this generalises to

$$
\Delta\left(t_{0}, t\right)=\exp \left(-\int_{t_{0}}^{t} d t^{\prime} \int d z c_{N}\left(t^{\prime}, z\right)\right)
$$

## Sudakov form factor in QCD

## Emission probability

$$
\mathcal{P}\left(\Phi_{\mathrm{rad}}\right) \mathrm{d} \Phi_{\mathrm{rad}} \approx \frac{\alpha_{\mathrm{S}}(q)}{\pi} \frac{\mathrm{d} q}{q} P(z, \phi) \mathrm{d} z \frac{\mathrm{~d} \phi}{2 \pi}
$$

Sudakov form factor = probability of no emission from large scale $\mathrm{q}_{1}$ to smaller scale $\mathrm{q}_{2}$

$$
\Delta_{\mathrm{S}}\left(q_{1}, q_{2}\right)=\exp \left[-\int_{q_{2}}^{q_{1}} \frac{\alpha_{\mathrm{S}}(q)}{\pi} \frac{\mathrm{d} q}{q} \int_{z_{0}}^{1} P(z) \mathrm{d} z\right]
$$

## Conventions for Sudakov form factor

$$
\begin{aligned}
& \Delta_{\mathrm{S}}\left(q_{1}, q_{2}\right)=\exp \left[-\int_{q_{2}}^{q_{1}} \frac{\alpha_{\mathrm{S}}(q)}{\pi} \frac{\mathrm{d} q}{q} \int_{z_{0}}^{1} P(z) \mathrm{d} z\right] \\
& \Delta\left(p_{\mathrm{T}}\right)=\exp \left[-\int_{p_{\mathrm{T}}}^{Q} \frac{\frac{\mathrm{~d} \sigma^{(\mathrm{MC})}}{\mathrm{d} y \mathrm{~d} p_{\mathrm{T}}^{\prime}}}{\frac{\mathrm{d} \sigma^{(\mathrm{B})}}{\mathrm{d} y}} \mathrm{~d} p_{\mathrm{T}}^{\prime}\right]
\end{aligned}
$$

$$
\Delta_{R}\left(p_{T}\right)=\exp \left[-\int \frac{R}{B} \Theta\left(k_{T}\left(\Phi_{R}\right)-p_{T}\right) d \Phi_{r a d}\right]
$$

$$
\Delta_{R}\left(p_{T}\right)=\exp \left[-\int_{p_{T}} \frac{R}{B} d \Phi_{r a d}\right]
$$

Full expression,with details of softcollinear radiation probability

Dropped upper limit, taken implicitly to be the hard scale Q

Introduced suffix (R in this case) to indicate expression used to described radiation

Integration boundaries only implicitly indicated

## PS example: Higgs plus radiation



## Leading order. <br> No radiation, Higgs PT $=0$



With emission of radiation Higgs pt $\neq 0$

Description of hardest emission in PS MC (either event is generated)


## Toy shower for the Higgs PT

Gavin Salam has made public a 'toy shower' that generates the Higgs transverse momentum via successive emissions controlled by the Sudakov form factor

$$
\Delta\left(p_{T}\right)=\exp \left[-\frac{2 \alpha_{s} C_{A}}{\pi} \ln ^{2} \frac{p_{T, \max }^{2}}{p_{T}^{2}}\right]
$$

You can get the code at https://github.com/gavinsalam/zuoz2016-toy-shower

NB. In order to get more realistic results you need at least at the code in v2

## Shower unitarity

It holds

$$
\int_{0}^{Q}\left[\delta\left(p_{\mathrm{T}}\right) \Delta\left(Q_{0}\right)+\frac{\Delta\left(p_{\mathrm{T}}\right) \frac{\mathrm{d} \sigma^{(\mathrm{MC})}}{d y \mathrm{~d} p_{\mathrm{T}}}}{\frac{\mathrm{~d} \sigma^{\mathrm{B}}}{\mathrm{dy}}}\right] \mathrm{d} p_{\mathrm{T}}=\Delta\left(Q_{0}\right)+\int_{Q_{0}}^{Q} \frac{\mathrm{~d} \Delta\left(p_{\mathrm{T}}\right)}{\mathrm{d} p_{\mathrm{T}}} \mathrm{~d} p_{\mathrm{T}}=\underset{\substack{\text { Shower } \\ \text { unitarity }}}{\Delta(Q)=1}
$$

so that

$$
\int_{0}^{Q} \mathrm{~d} p_{\mathrm{T}} \frac{\mathrm{~d} \sigma^{(\mathrm{MC})}}{\mathrm{d} y \mathrm{~d} p_{\mathrm{T}}}=\frac{\mathrm{d} \sigma^{(\mathrm{B})}}{\mathrm{d} y} \int_{0}^{Q}\left[\delta\left(p_{\mathrm{T}}\right) \Delta\left(Q_{0}\right)+\frac{\Delta\left(p_{\mathrm{T}}\right) \frac{\mathrm{d} \sigma^{(\mathrm{MC})}}{\mathrm{d} y \mathrm{~d} p_{\mathrm{T}}}}{\frac{\mathrm{~d} \sigma^{(\mathrm{B})}}{\mathrm{d} y}}\right] \mathrm{d} p_{\mathrm{T}}=\frac{\mathrm{d} \sigma^{(\mathrm{B})}}{\mathrm{d} y}
$$

A parton shower MC correctly reproduces the Born cross section for integrated quantities

This amounts to introducing approximate virtual corrections, whose job is simply cancelling divergencies from real emission and nothing more (nor less)

## PS MC in different notation

Writing the real cross section as described by the Monte Carlo (i.e. with the parton shower) simply as $\mathrm{R}^{\mathrm{MC}}$, we can rewrite

$$
\begin{aligned}
d \sigma^{M C} & =B d \Phi_{B}\left[\Delta_{M C}\left(Q_{0}\right)+\Delta_{M C}\left(p_{T}\right) \frac{R^{M C}}{B} d \Phi_{r a d}\right] \\
& \text { with } \quad \Delta_{M C}\left(p_{T}\right)=\exp \left[-\int_{p_{T}} \frac{R^{M C}}{B} d \Phi_{r a d}\right]
\end{aligned}
$$

as our Master Formula for a Parton Shower Monte Carlo.

Thanks to the shower unitarity, it holds

$$
\Rightarrow \int d \sigma^{M C}=\int B d \Phi_{B}=\sigma^{L O}
$$

## Matrix Element corrections

In a PS Monte Carlo $\quad R^{(M C)}\left(\Phi_{R}\right)=B\left(\Phi_{B}\right) \mathcal{P}\left(\Phi_{\text {rad }}\right)$

Replace the MC description of radiation with the correct one:

$$
\mathcal{P}\left(\Phi_{\text {rad }}\right) \rightarrow \frac{R}{B}
$$

The Sudakov becomes
$\Delta\left(p_{\mathrm{T}}\right)=\exp \left[-\int_{p_{\mathrm{T}}}^{Q} \frac{\frac{\mathrm{~d} \sigma^{(\mathrm{MC})}}{\frac{\mathrm{d} \mathrm{d} p_{\mathrm{T}}^{\prime}}{\mathrm{d} \sigma^{(\mathrm{B})}}} \mathrm{d} y p_{\mathrm{T}}^{\prime}}{} \mathrm{d}\right] \Delta_{R}\left(p_{T}\right)=\exp \left[-\int \frac{R}{B} \Theta\left(k_{T}\left(\Phi_{R}\right)-p_{T}\right) d \Phi_{r a d}\right]$ and the $x$-sect formula for the hardest emission

$$
d \sigma^{M E C}=B d \Phi_{B}\left[\Delta_{R}\left(Q_{0}\right)+\Delta_{R}\left(p_{T}\right) \frac{R}{B} d \Phi_{r a d}\right]
$$

## Matrix Element corrections



## Beyond PS MC

We wish to go beyond a Parton Shower (+MEC) Monte Carlo, so that

- we can successfully interface matrix elements for multi-parton production with a parton shower
- we can successfully interface a parton shower with a NLO calculation


# It's a quest for exactness of ever more complex processes 

## Process P exact at LO, the rest PS approximation



# Process $P$ and $P+l j$ exact at $L O$, the rest $P S$ approximation 

 [PS+MEC or PS from ME for P+le]Additional
Qs powers

Additional QCD loops


Process P, P+lj, P+2j, ... exact at LO, the rest PS approx. [PS+Matrix Element (CKKW, MLM,....)]

Additional
as powers

Additional QCD loops


## Process P exact at NLO, the rest PS approximation [PS+NLO (MC@NLO, POWHEG,...)] <br> Additional <br> Qs powers

Additional QCD loops


## MCs at NLO

'MonteCarlos at NLO':
$\rightarrow$ MC@NLO [Frixione and Webber, 2002]
-POWHEG [Nason, 2004]
NB.MC@NLO is a code, POWHEG is a method

Having evolved into (semi)automated forms:

- The POWHEG BOX ${ }_{\text {[powhegbox.mib.inf.it 2010] }}$
-MadGraph5_aMC@NLO [amcatrlo.cern.ch 2011]


## MCs at NLO

Matrix-element corrected shower Monte Carlos still have leading order accuracy for the total rates

$$
\begin{gathered}
d \sigma^{M E C}=B d \Phi_{B}\left[\Delta_{R}\left(Q_{0}\right)+\Delta_{R}\left(p_{T}\right) \frac{R}{B} d \Phi_{r a d}\right] \quad \text { and } \quad \Delta_{R}\left(Q_{0}\right)+\int \Delta_{R}\left(p_{T}\right) \frac{R}{B} d \Phi_{r a d}=1 \\
\Rightarrow \int d \sigma^{M E C}=\int B d \Phi_{B}=\sigma^{L O}
\end{gathered}
$$

We want to do better, and merge PS and NLO, so that

$$
\int d \sigma^{P S+N L O}=\int(B+V) d \Phi_{B}+\int R d \Phi_{R}=\sigma^{N L O}
$$

## MC@NLO

Idea: remove from the NLO the terms that are already generated by the parton shower (NB.MC-specific)

$$
d \sigma^{M C @ N L O}=\bar{B}_{M C} d \Phi_{B}\left[\Delta_{M C}\left(Q_{0}\right)+\Delta_{M C}\left(p_{T}\right) \frac{R^{M C}}{B} d \Phi_{r a d}\right]+\underline{\left[R-R^{M C}\right] d \Phi_{R}}
$$

It is easy to see that, as desired,

$$
\int d \sigma^{M C @ N L O}=\int d \sigma^{N L O}
$$

## POWHEG

Idea: generate hardest radiation first, then pass event to MC for generation of subsequent, softer radiation

$$
\begin{aligned}
& d \sigma^{P O W H E G}=\bar{B} d \Phi_{B}\left[\Delta_{R}\left(Q_{0}\right)+\Delta_{R}\left(p_{T}\right) \frac{R}{B} d \Phi_{r a d}\right] \\
& \bar{B}=B+\left[V+\int R d \Phi_{\text {rad }}\right] \\
& \text { NLO x-sect }
\end{aligned}
$$

It is easy to see that, as desired,

$$
\int d \sigma^{P O W H E G}=\int d \sigma^{N L O}
$$

## Large Рт enhancement in POWHEG

The 'naive' formulation for POWHEG is

$$
d \sigma^{P O W H E G}=\bar{B} d \Phi_{B}\left[\Delta_{R}\left(Q_{0}\right)+\Delta_{R}\left(p_{T}\right) \frac{R}{B} d \Phi_{r a d}\right]
$$

In this form $\bar{B} d \Phi_{B}$ provides the NLO K-factor (order I+O( $\left.\alpha_{\mathrm{s}}\right)$ ), but also associates it to large pt radiation, where the calculation is already $\mathrm{O}\left(\alpha_{s}\right)$ (but only LO accuracy).


This generates an effective (but not necessarily correct) $O\left(\alpha_{s}{ }^{2}\right)$ term (i.e.
NNLO for the total cross section)
OK because beyond nominal accuracy, but one may feel uncomfortable with such large numerical factors

## Modified POWHEG

The 'problem' with the naive POWHEG comes from the hard radiation being enhanced by spurious higher orders. In order to suppress this effect, we split

$$
R=R^{S}+R^{F} \quad R^{S} \equiv \frac{h^{2}}{h^{2}+p_{T}^{2}} R \quad R^{F} \equiv \frac{p_{T}^{2}}{h^{2}+p_{T}^{2}} R
$$

Contains
singularities

Regular in
small PT region
$d \sigma^{P O W H E G}=\bar{B}^{S} d \Phi_{B}\left[\Delta_{S}\left(Q_{0}\right)+\Delta_{S}\left(p_{T}\right) \frac{R^{S}}{B} d \Phi_{r a d}\right]+R^{F} d \Phi_{R}$
$\bar{B}^{S}=B+\left[V+\int R^{S} d \Phi_{r a d}\right] \quad \Delta_{S}\left(p_{T}\right)=\exp \left[-\int_{p_{T}} \frac{R^{S}}{B} d \Phi_{r a d}\right]$

## Modified POWHEG

## In the $h \rightarrow \infty$ limit the exact NLO result is recovered



## Comparisons

$$
\begin{gathered}
d \sigma^{M C}=B d \Phi_{B}\left[\Delta\left(Q_{0}\right)+\Delta\left(p_{T}\right) \frac{R^{M C}}{B} d \Phi_{r a d}\right] \\
d \sigma^{M E C}=B d \Phi_{B}\left[\Delta_{R}\left(Q_{0}\right)+\Delta_{R}\left(p_{T}\right) \frac{R}{B} d \Phi_{r a d}\right] \\
d \sigma^{N L O}=[B+V] d \Phi_{B}+R d \Phi_{R} \\
d \sigma^{M C @ N L O}=\bar{B}_{M C} d \Phi_{B}\left[\Delta_{M C}\left(Q_{0}\right)+\Delta_{M C}\left(p_{T}\right) \frac{R^{M C}}{B} d \Phi_{r a d}\right]+\left[R-R^{M C}\right] d \Phi_{R} \\
d \sigma^{P O W H E G}=\bar{B}^{S} d \Phi_{B}\left[\Delta_{S}\left(Q_{0}\right)+\Delta_{S}\left(p_{T}\right) \frac{R^{S}}{B} d \Phi_{r a d}\right]+R^{F} d \Phi_{R} \quad \begin{array}{c}
R=R^{S}+R^{F} \\
R^{S} \equiv \frac{h^{2}}{h^{2}+p_{T}^{2}} R \\
R^{F} \equiv \frac{p_{T}^{2}}{h^{2}+p_{T}^{2}} R
\end{array} \\
\end{gathered}
$$

Process $P$ exact at $N L O, P+I j, P+2 j, \ldots$ at $L O$, the rest $P S$

$$
[\mathrm{PS}+\mathrm{NLO}+\underset{\substack{\text { Additional } \\ \text { os powers }}}{\operatorname{ME}} \underset{\text { [Hamilton, Nason ' } 10]}{ }
$$

Additional QCD loops


Process $P, P+l j, P+2 j, \ldots$. exact at NLO, the rest PS [PS+NLO+ME ${ }_{\text {NLO }}$ (MEPS@NLO, MiNLO', ...)]

Additional

- s powers



## Process P exact at NNLO, $\mathrm{P}+\mathrm{lj}$, at NLO, the rest PS

[PS+NNLO+ME ${ }_{\text {NLo }}$ (MINNLOps, ...)]
Additional
as powers

Additional QCD loops


## Take home points

Monte Carlos in QCD are complicated. I only scratched the surface here and gave almost no details. If interested, check lectures of real MC people (Sjostrand, Skands, Nason, Maltoni, Frixione, Krauss, Hoeche, Richardson,Webber and many others)

Monte Carlos exploit property of universality of soft/collinear radiation to resum its effects to all orders (within some approximations)

Effects of multi-parton, hard, large-angle radiation can be included via exact calculations and proper (and delicate) mergings. State of the art accuracy is NLO and, in some cases, NNLO

The result is a detailed description of the final state, covering as much phase space as possible.Accurate descriptions of data are usually achieved

