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Abstract

These two lectures discuss the future of high-energy physics. We will review the
some past successes and the technology that enabled these discoveries.

Lecture 1:
- introduction & a brief history of colliders
- the basis for success: accelerator & detector technology

Lecture 2:

- high-energy physics: what's next?

- future collider projects: from Higgs factory to discovery machine
- outlook: innovative accelerator technology

The aim of this lecture is to provide you with the elements to form an opinion on
the future of fundamental physics
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Effective theories

“The aim of particle physics is to understand what everything is made of,

and how everything sticks together. By everything | mean me and you,
the Earth, the Sun, the 100 billion suns in our galaxy and the 100 billion
galaxies in the observable universe. Absolutely everything." - Brian Cox
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Mission statement

f Biology, psychology, economy

Chemistry — Mendeleev 1869
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Atomic physics — Rutherford/Bohr 1913

Particle physics — 2012

‘ New physics?
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The Standard Model

The complexity of the world reduced to a minimal(?) set of ingredients
The SM constituents of matter: 6 quarks, 6 leptons (+anti-particles)
Forces are carried by “cauae” bosons: the Higgs field
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We are quite certain that this picture is essentially correct,
but we are equally certain it's not the end of the story
(SM = successful effective theory; SM # Theory of Everything)
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Colliders

A brief history of colliders

b
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Jungfraujoch
observatory

Hess balloon experiment

AMS experiment on the
Int’l space station

Cosmic rays had served particle physics well (and continue to do so)
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The positron (anti-matter!) was
discovered in cosmic ray
experiments in 1932

Surprise! Four years later, the
same group discovered
something nobody had ordered,;
the muon (and the second
generation)
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The birth of accelators ...

L. 1|

""""""" | powerful electrostatic accelerators (‘30s)

w
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_- 174 ' _ L 1 1 1 Cockroft and Walton and van de Graaff developed
|

Berkeley and Livingston in
front of their cyclotron (‘30s)

The ‘30s saw the rapid development of accelerator technology.
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And their evolution..

The Livingston plot:

The ‘30s, ‘40s and ‘50s saw a rapid
succession of different machine
designs: D.C and electro-static 100
accelerators were replaced at the
“energy frontier” by cyclotrons, then
betatrons, sychrocyclotrons...
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to colliders ...

The quantity that matters is
“center-of-mass” energy

In fixed-target experiments:
Ecy oV Epean

With colliding beams:

ECM oC Ebeam

The key realization:

colliding beams of particles ~ -~
and anti-particles Touschek and he Frascati group in front of ADA (‘50s)

Pioneered by Wideroe and Touschek (ADA in Frascati!)
Biographical accounts from U. Amaldi and G. Pancheri
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Colliders

After WWII colliders fueled progress in particle physics.
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Circular colliders and synchrotron radiation

Synchrotron radiation limits acceleration:

E4/m* Energy loss per turn as a function of beam
(A E )syncoC I energy E, particle mass m and circumference L

Energy must be restored (RF power) and
removed from magnets (cooling power)

Solutions:

- large rings (note that AE is only inversely proportional to L, but see tomorrow)
- linear colliders (SLC, but must accelerate in one go, but see tomorrow)
- accelerate more massive particles

(proton energy loss is 10" times smaller than for electrons)

- accelerate more massive elementary particles
(see muon collider tomorrow)
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Colliders
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... the Large Hadron Collider

: FA’_L‘ICE 3

Some protons...

A 27 km long tunnel...

¥ :

3 W,
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The LHC — big science

Big questions require a big effort!

Big machine: 27 km circumference, experiments the size of small cathedrals
Big time lines: first LHC workshop 1984, first data 2010, HL-LHC until 2040
Big investment: the LHC cost several billion euros

Big collaboration: experiments with ~ 3000 authors!

Fortunately, big efforts lead to big rewards!
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... discoveries 1960-2022

top Tevatron 1995

charm BNL/SLAC 1974 bottom ENAL 1977

Quarks, SLAC 1968

gluon DESY HERA 1975
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Colliders

Beyond discovery
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The Higgs boson — from run 1 to run 2
I A LHC run 2 delivered 140 fb™
8253_ Il 5ackground 72" o E (cf. the Higgs boson was discovered with a bit
2 [ Wsackgoundzeets i 2L ] over 10 fb™* and the Tevatron delivered 10 fb™
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Higgs boson news

The particle discovered in 2012 is definitely A Higgs boson. If it is
THE Higgs boson, it MUST behave exactly as predicted by theory.

2012 2015 2018 2018 e
g q q q w/z t/b
t/b/c i e g
tb/ch ~— Dmemee= H . i} | - H
t/b/c w/z \ g
g q g J|la H t/b
2012 i 2012 . 2012 " 2018 o, ‘15, ‘20 -
w tb/r A
H eweeee < H == w - --<rt/b/r H ===eee < H ==eee- <
w b/t N
Wiz v/ Z v/Z b/c T/

2012: one out of four production mechanisms, two decay modes
2015: Vector-boson-fusion, H- 1t (fermions!)

2018: Associated ttH production, H - bb decay

2020: evidence H- uu (2nd gen.) Missing: charm, tH production
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Higgs boson summary
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Fabiola Giannotti: we got
very lucky (many couplings
accessible at the LHC)

John Ellis: it looks and
guacks like a Higgs boson
(all measurements so far
compatible with simplest
Higgs particle)

ATLAS & CMS:
Nature articles with review of

measurements so far,
arXiv:2207.00043/92

See also: Salam, Wang, Zanderighi,
https://arxiv.org/abs/2207.00478
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Colliders

Initial discovery followed by multiple “minor discoveries”
of Higgs processes. Slowly turning into precision
characterization

Colliders are “discovery machines”, but also allow for
orecise study of new particles’ interactions and properties

Keys: controlled production, calculability of SM
oredictions, advanced detectors and analysis techniques

¢ Compare: dark matter, observed through its gravitational
2 Impact since the ‘30s, but still very much in the dark.
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Colliders

Accelerator technology (basic intro only)

b
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Magnets

Circular colliders accelerate the beam in many passes through the same cavity
In pp colliders the limiting factor is the B-field that steers the beams around the orbit
SppS had Tevatron pioneered (4T) super-conducting magnets

LHC was built with 8T dual-aperture dipole magnets

LHC DIPOLE : STANDARD CROSS-SECTION

ALIGNMENT TARGET

MAIN QUADRIPOLE BUS-BARS

HEAT EXCHANGER PIPE

SUPERINSULATION
SUPERCONDUCTING COILS
BEAM PIPE

------ i VACUUM VESSEL

BEAM SCREEN

AUXILIARY BUS-BARS

SHRINKING CYLINDER / HE I-VESSEL

THERMAL SHIELD (55 to 75K)

NON-MAGNETIC COLLARS

IRON YOKE (COLD MASS, 1.9K)

DIPOLE BUS-BARS

SUPPORT POST
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One small failure in
1000s of components
can have large
consequences
(damage due to faulty
connection in LHC after
startup in 2008)




Magnets: progress

The key challenge: large-scale, large-field magnets

16T field is the target for the future FCC project

High Temperature Superconductor potentially a more cost-effective solution

100000 | Development of robust and
cost-efficient processes
LHC
10000
. Robust Nb;Sn
E
< 1000
o
C
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@ 100 Logical step for a next
g HL-LHC 11T phase (2027-2034)
o 10
2 /
1 Fresca2 Ultimate Nb;Sn Exploration of
MDPCT1 » HTS new concepts
- and technologies
5 10 15 20 25

Bore field (T)
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RF Cavities

The accelerating structure in any modern collider

Set up a standing RF wave in Ghz frequency range in periodic metal structure
Particles that arrive “in sync” will be attracted and accelerated

Linear colliders rely on a long series of cavities, circular colliders are multiple-pass

RF power provided by a klystron (or drive-beam in case of CLIC)
Input RF power at 1.3 GHz ILC super-conducting cavity (Image: S. Posen)

o
f )

i .li. "!MQ"M,
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European XFEL

S S v

.J o " Oxdorfer Born
i

European XFEL at DESY
Hamburg is a 19.5 GeV linear
accelerator that is used to
generate energetic X-ray beams
for “photon science”

Based on TESLA/ILC cavities
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RF Cavities: progress

Figure of merit: accelerating gradient in MV/m, quality factor QO*
Super-conducting Niobium cavities: up to 45 MV/m (XFEL avg. ~ 22 MV/m)

Limiting factor: electromagnetic discharges. Key to high E__ - surface treatment

10" - * I 1 * [ * T~ T * T T~ "™ a1 * 1 °
[ @ |LC processing
®  Modified 120C baking (N2 included)
-ll... ' . .
h-."'""----... ' *QO0 quality factor that is
] ] . .
ooeen, "T\. - inversely proportional to the
\\"\2' surface resistance and power
O 10 | o . . . . .
o 107 : dissipation in the cavity walls
: b 3 Higher Q = less power, less
L] | _ gher Q, p
Dz cooling, less cost
34 36 Ea-;)cd? 44 46
109 PR . ] 1 ] P 1 ] 1 | — 1 | ) ] 1

0 5 10 15 20 25 30 35 40 45 50 N infusion improves Eacc vs. Q0
E.__ (MV/m) A. Grasselino et al., Fermilab
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RF Cavities: progress

Higher gradient = more compact facility

Note: applications of advanced cavities

iIn compact accelerators for Free-Electron-
Lasers (XFEL, SwissFEL) and in medical
applications (proton-therapy)

And “cool copper” cavities at 77K up to 150 MV/m (C3)

Copper normal-conducting “warm” cavities reach up to 100 MV/m (CLIC)

7000 m

Fermilab Village

S F

0.25 05
T TR T N S |

30
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Final focus

The luminosity of the machine depends crucially on beam current and beam size:
_ kN, N,f

L=
4mo,0,

Where k = number of bunches (several 1000 for LHC), N1, N2 are the bunch
population (10™ protons), G , o, are the beam size (16 um)

Smaller, higher-current beams are better, but require tight control over emittance

Nano-beams and crab-crossing
achieved in Belle 2 and test facilities

Image: ATF test facility at KEK




Colliders

Detector technology

b
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The LHC experiments

The LHC provides proton beams with an energy of 6.5 TeV
(cf. previous world record by the Tevatron: 0.98 TeV)

Beams cross and collide at 4 interaction points, equipped with
experiments that register the products of the collisions




The LHC experiments

The experiments consist of a number of

subsystems — a charged particle tracker,

a calorimeter system, muon chambers

Each particle leaves a specific signature...

Piecing together all
detected particles we
can infer what
happened in the
proton collision
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A look Inside jets

The sub-structure of jets is accessible
thanks to more granular detectors

Jet mass and substructure reveals
the origin of (large-radius) jets: the
boosted W-peak clearly stands out

ATLAS Vs =13TeV, 139 fb™, p__ > 675 GeV
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The Lund jet plane provides an
image of the jet that separates hard
splittings (matrix element), soft and
collinear radiation (parton shower)
and non-perturbative effects
(hadronization model)
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Colliders

Detector technology for the next collider
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Detector requirements: e+e-

From key requirements from physics:
- pt resolution (total ZH x-section)
o(1/p) =2x 10° GeV' @ 1 x 107/ (p; sin'"%0)

~ CMS /40

- vertexing (H — bb/cc/T)
a(do) < 5 @ 10/ (p[GeV] sin*?) ym ~CMS /4

- jet energy resolution (H — invisible) 3-4%

- hermeticity (H — invis, BSM) Omin = 5 mrad

To key features of the detector:
- low mass tracker:
- main device: Time Projection Chamber (dE/dx"
- add. silicon: eg VTX: 0.15% rad. length / layer)

- high granularity calorimeters
optimiseq for particle flow

\-x1000 more r/o cells than LHC exps.

wy{
IL%, ~x10-100 more than HL-LHC exps.
‘s’ Marcel Vos Touschek school 2022
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Hadronic final states

Hadronic final states are key for
the precision e'e” programme
- Higgs production, arXiv:1509.02853

- Gauge boson pair production _
- Top quark production, arXiv:1604.0122 400 -

Lepton colliders offer a lot of QCD |

- Controlled and calculable initial state

- Reference samples of q/g/b/W/Z/H/t jets

- Jets “without the junk” (MPI, UE, pile-up) 0= 0 80 _ 100 120
Invariant mass [GeV]

Jet reconstruction is important

Performance goal: distinguish hadronic W and Z decays

g‘i“a Marcel Vos Touschek school 2022




Jet response

Particle flow offers the ultimate jet energy resolution

Combine information from all sub-systems, use the best
measurement available for each category of particles:

- charged patrticles
(>60%, tracker, DpT/pT ~) . .'r;'
- photons/electrons " s 5
(~25%, EM Calo, AE/E ~10-20%//VE) Hadrons

- neutral hadrons

(~10%, had. Calo. AE/E ~40-100%//VE)
F'ﬁl

o Neutral
e Hadron

P T

o

¢ ' lll i

Theoretical limit AE/E = 19%/VE (for perfect track-cluster association)
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Jet response

Full-simulation studies show Pflow limitations, in particular at high energy

Overlapping calorimeter clusters

can be hard to associate to tracks 'a_g'
Lateral “width” of calorimeter showers E‘ 3
o
()]
EM showers: %
Moliere radius ~1cm in SiW stack g
Hadronic showers: ;_
Int. length ~10 cm in W, 17 cm in Fe Ea 1
(%))
Highly segmented stack, both lateral g
(< shower width) and longitudinal o

(tens of samples)

ILD: Di-jet events, energy resolution for
“jets” inferred from total visible energy

4

AN

— PandoraPFA reconstruction

M W

| — + Perfect photon clustering
+ Perfect neutral hadron clustering
Perfect pattern recognition

0-||

M TR TR T U BT ST
100 150 200 250
E [GeV]

50

Often, jet clustering limits resolution in complex multi-jet topologies
see e.g. CLIC di-Higgs production at 3 TeV, arXiv:1607.05039)
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Detector concepts

The detector concepts for a future e+e- collider
(ILD, SID, CLIC, FCC) are optimized for particle flow

- granular calorimeter - 4-5 Tesla solenoid - low-mass tracking and vertexing

Image: ILD For details:
ILC TDR, arXiv:1306.6329
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Monte Carlo simulation

Not Science Fiction: extensive
design and Monte Carlo studies.

40 GeV 1" in test beam

DRUID, RunNum = 330437, EventNum = 1005

Not Science Fiction: L
1 m?® prototype beam test | cca Se;“;f:;';;(‘lxl-cmz cells) 3

w2 Complete engineering § AL section (83 emicells

77 and production chain for
CMS HGCAL CAu(eg
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Granular calorimetry: proof-of-principle

CMS END CAP
8 CALORIMETER
7A UPGRADE FOR RUN4

— —

!
v
r"‘ A T ——— |’ bed
= A
= i st I,{L .t

CMS HGCal, a complete Si+absorber sampling calorimeter prototype,
Solidly establishes the ultra-granular “CALICE-style” calorimeters as the
baseline for ILC (both ILD and SiD)

see D. Bhowmik, LCWS21, link to talk
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https://indico.cern.ch/event/995633/contributions/4261862/attachments/2209225/3738590/LCWs_2021_Debabrata.pdf

Calorimetry

Highly granular calorimeter system:
- CALICE has developed highly granular solutions for ECAL & HCAL
- Keep the stack compact and uniform (thin PCBs, minimal dead material)
- CMOS pixels may be a cost-effective alternative for pads?

Key challenge is the sheer scale, channel count and cost
- Cost reduction R&D o550
- Ensure multiple vendors 0,300

- Automatization -
- Industrialization 0150
And only as a last resort: 0:109
wyz| - Negotiate size & granularity
’;;5 §A| DA A@@ 4\5\0 £ & & & & 0_\}0& $ ‘\Sig}\&ﬁ 0260{?}
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Silicon tracking

2022

Silicon sensors now dominate
tracking and vertexing with
large O(100 m?) systems

NIM217 (1983):

1200 diode strips on a 2” wafer

Very bulky support and ancillary

systems

1000
B Strips (+Pixels) (HEP)
OStrips (Astro/Nucl) CMS 199m2
< Pads Ej
100 OPixel (HEP) GLAST 83m2
ATLAS 64 m2
10 .
g CDF-SVXII A
‘s DELPHI , @ ZEUS ATLAS(pixel)
3 AMS-01;  gap u
s ALEPH - el
c Gao elle ~ CMS(pixel)
Q 1 .
g ®PAL CLEO-IIl
Z COF-SVX HLs
DELPHI(pixel)
0.1 NATH o)
Markg
CERN NFM
BOL &
= NAPa
0.01 "
O NA1b ..
Y. Unno, E. Heine
S8 . . . ‘ . . ‘ .
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
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Silicon tracking for LHC run 1,2,3

Still pretty much the same planar process
Industrial scale: 2” wafers — 8”
Segmentation: pixels 100 x 100 um?
Micro-electronics: compact FE/interconnect
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Silicon 4D tracking

Timing detectors open up 4D tracking

Low Gain Avalanche Detectors (LGADs)

LGAD TECHNOLOGY iLGAD TECHNOLOGY (iLG1)
« Segmentation of the multiplication. < Multiplication extended over the electrode.
« Electron collection » Hole collection
» Single side process » Complex double side process
N’ Electrode ff,';?ﬂ%f: Chargedpaticle N Electrode
. ’
( J ( J e
nm P-tfy o P-type multiplication layer
multiplication layer 6 » -
h'g 6 e “‘.§6e
¢id 9
h' “‘\ +
' h
High resistivity p-type substrate P eSS PV S G .““‘.‘ luﬂ
v N i il Image from A. Doblas

P’ electrode P’ electrode

But, also, RICH for PID, time information from SiPMs in calorimeter
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LGADs: progress

2011: LGAD Technology, P. Fernandez NIM A658 (2011), G. Pellegrini NIMA 765
2013: Promise 20 ps time resolution, Turin/CNM/UCSC, arXiv:1312.1080
Then, things started to move really fast!!

Today: Construction, ATLAS and CMS include several m? in upgrades

f!, eg XiRPh L CWS21, link to talk Touschek school 2022



https://indico.cern.ch/event/995633/contributions/4261856/attachments/2209122/3739956/ATL-HGTD-SLIDE-2021-048.pdf

Timing in e+e- colliders

What is the role of time information in the ILC experiments?
Use PID from TOF, bring VXD closer to IP, reduce confusion in PFA?

Does it increase the power budget?

Should we revise the cooling strategy?

[y
=

| — — KIn TOF
| — K/n dE/dx+TOF

separation /G
S =N W A UI'I S 1 o0 e

p (GeV/e)
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Silicon tracking for e+e- colliders

Precision tracking & vertexing requires further integration

Less radiation, less dense
environment, less power
- Better performance

Sensor is still pretty much
the same high-R silicon

But: thinned to 50-75 um

read-out electronics;
on the silicon

Power & signal lines:
on the silicon

cscl Support structure:
= the silicon DEPFET pixel sensor for Belle 2

Ry Touschek school 2022
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Several groups/collaborations have developed CMOS
sensors for e+e- vertex detectors and tracking systems

Fuuy m0n0|lthIC 28 um collection electrode
Sensor -
Today’s CMOS sensors K4 pU

volume

(MIMOSA, ALPIDE, MonoPix,...)
can meet e+e- requirements.

z ) ) _ Artistic view of a
&4 | will focus on engineering & SEM picture of \ il

csic| integration in the following ALPIDE cross section Q,, (MIP) = 1300 e & V = 40mV

Not to scale
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Silicon tracking for e+e- colliders

RIS
N o 2T

Belle 2 VXD upgrade (~2026) is
foreseen with OBELIX (TJ-monopix)

CMQOS sensors
Adapt the all-silicon ladder concept

a“; Marcel Vos Promising steps towards all-CMQOS ladder bByolisRerie/EZMAdV3SDEMO.




Silicon tracking for e+e- colliders

Wire
bonding

The Mu3e experiment and
ALICE have aggressive

plans to reduce detector
material (Kapton support
structures, bent sensors)



https://indico.cern.ch/event/999825/contributions/4251039/attachments/2218754/3756828/20210331_light_mech_ECFA_Gargiulo.pdf

Mechanics and cooling

micro—channel

e

sensor

e
*a

sensor

Q Carbon

o/nib.es) opelio) wo.j abew|

s ooling
A‘r = Carbon

sensor

Also: new refrigerants (Krypton, super-critical CO2)

e Vi Touschek school 2022




Micro-channel cooling

Active cold plates Integrated micro-channel
used by NA62 GTK and LHCb VELO used by NA62 GTK and LHCb VELO
See P. Collins at ILCX2021 See P. Collins at ILCX2021

Marcel Vos Touschek school 2022




Integrated micro-channel cooling

(i.e. R. van Erp et al., Nature 585, 211-216 (2020))

A pattern of small trenches (3 x 10 um) is etched on the
backside of the pixel detector

Microchannels are etched isotropically with XeF2.

A thin film of parylene (5 um) seals the microchannels. It is
finally cured by a thermal cycle.

Filling of trenches (e.g. PECVD, Parylene)

M. Boscardin et al., NIM A, 2013

L. Andricek et al., JINST 11 (2016) P06018
C. Lipp, MSc Thesis, EPFL, 2017

I. Berdalovic et al., JINST 13 (2018) C01023

From A. Mapelli (CERN+EPFL)

Working MALTA CMOS sensor with integrated p-channels
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We ought, in every instance, to submit our reasoning to the
test of experiment. and never to search for truth but by the
natural r0ad of experiment and observation

Antoine Livosier
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AIDA innova

Blue-sky and long-term R&D is poorly funded

AIDA innova provides EU-funded forum for detector R&D,
Pool resources across all experiments and future collider concepts
Use near-future experiments as stepping stones

Connect to developments beyond HEP



Summary

High-energy collisions are a key tool to advance knowledge of the constituents of
matter and their interactions at the most fundamental level

The tremendous progress in fundamental physics in the last century is fueled by
exponential improvements in accelerator technology

The LHC program has opened the TeV regime and delivered a long series of
discoveries of previously unobserved processes, with or without Higgs boson
Much more to come in the the next two decades with run 3 and the HL-LHC

The key technologies behind the collider programme are high-field magnets,
powerful and efficient RF cavities, advanced beam focussing.

Experiments require the most advanced detector technology. Examples of highly
successful detector R&D: ultra-granular calorimeters and silicon detectors.

Marcel Vos 61 Touschek school 2022
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