n_TOF

Neutron cross sections for science and technology

Research fields

Nuclear Astrophysics

 ✓ Nucleosynthesis of heavy elements
 ✓ Stellar evolution
 ✓ Big bang nucleosynthesis

Nuclear technology and medical application:

- ✓ Fission reactors (Gen-IV, ADS)
- ✓ Fusion
- ✓ Transmutation of nuclear waste
- Neutron capture therapy (adrontherapy)

Research fields

n_TOF in numbers

International collaboration ~ 130 Researchers ~ 33 Institutes

Spokesperson: A. Mengoni (ENEA, INFN-Bo)

110 isotopes studied !!! Data available on EXFOR. https://twiki.cern.ch/twiki/bin/ view/NTOFPublic/DataDissemin ation

n_TOF Collaboration

n_TOF - ITALY

33 researchers (INFN + University) 17.0 FTE

Close collaboration with ENEA (Bologna, Frascati) INAF (Teramo), CNR (Bari)

> 47 researchers 23.6 FTE

Responabile Nazionale: **C. Massimi** (Unibo, **INFN-Bo**)

n_TOF facility

The features of the n_TOF facility are related to the PS proton beam:

high energy, high current, low duty cycle.

p (protons) ions RIBs (Radioactive Ion Beams) n (neutrons) p (antiprotons) e (electrons)

n_TOF facility

INFN

INF

NEAR station: activation measurements on **rare isotopes** with **short half-life** (produced at CERN@ISOLDE or PSI). Also suitable as **irradiation station**

NEAR station: activation measurements on **rare isotopes** with **short half-life** (produced at CERN@ISOLDE or PSI). Also suitable as **irradiation station**

n_TOF facility

The features of the n_TOF facility are related to the PS proton beam:

high energy, high current, low duty cycle.

Detectors

(n, γ) reactions

Total Absorption Calorimeter (TAC) BaF₂

Relevant INFN contribution: test, maintenance and optimization of the capture detectors

Detectors

Fission reactions

Parallel Plate Avalanche Chamber (PPAC)

MicroMegas

Setup based on Si detectors for high accuracy measurements (EPJ A front page) developed by LNS

STEFF

Setup for ⁷Be(n,p), ⁷Be(n, α) e la ¹²C(n,p) developed by INFN

Detectors

Quad-Timepixes used to find neutron beam line. Borated GEM (High efficiency th. neutron detector) in cooperation CERN - ESS - INFN

INTOF

Assemblea di Sezione | 28.3.22 | Bologna |

MSX09-3007 3 cm × 3 cm, **300 μm** thick > particle range

Beam characterizations

3 different detectors based on 3 neutron standards

FR

Beam characterizations

Assemblea di Sezione | 28.3.22 | Bologna |

 $\times 10^3$

HPGe for NEAR

FR

INTOF

Interest

Thesis 2021:	Thesis	
- PhD 1	2017 2018	3
- Master 1	2010	2
- Bachelor 2	2020	3

Contact for thesis:

- ENEA (→ NewCleo)
- Laboratorio per l'Energia Nucleare Applicata (LENA)

- Transmutex

n_TOF @ BO

- ✓ Richieste ai servizi limitate (... e mai programmate)
 → risposta sempre pronta e soddisfacente .
- ✓ Prezioso il supporto del CNAF per il calcolo
- ✓ Per il futuro prevediamo richieste maggiori per lo sviluppo del rivelatore di neutroni in collaborazione con FOOT

Conclusion / future

Neutron Star Merger – r process

r-process contribution to observed elemental abundances?

r process = Solar yields – s process

Improve the **physics** of both the **s-process** (neutron capture) and the **r-process** (fission)

INFN

INTOF

Krasznahorkay, A.J.; et al.: "Observation of Anomalous Internal Pair Creation in ⁸Be: A Possible Indication of a Light, Neutral Boson". **Physical Review** Letters. 116 (42501): 042501 (2016). Krasznahorkay, A.J.; et al.: "New evidence supporting the existence of the hypothetic X17 particle". arXiv:1910.10459v1 nucl-ex] (23 October 2019), arXiv:2104.10075 (20 April 2021)

INFN

New proposal

INFN

Neutron neutron scattering lenght

n TOF

Neutrons and protons behave in the same way under nuclear interaction? Charge symmetry is a special case of the **isospin invariance**, its violation is known as charge symmetry breaking CSB: $m_p \neq m_n$; $a_{pp} \neq a_{nn}$; binding energy \neq mirror nuclei

s-process branching

 63 Ni (t_{1/2}=100 y) first branching point determines abundance of 63,65 Cu

The branching depends on the **stellar condition**, on the isotope half-life and on the **neutron capture cross section**

BBN: need for ⁷Be destruction

BBN successfully predicts the abundances of primordial elements such as ⁴He, D and ³He. Large **discrepancy** for ⁷Li, which is produced from electron capture decay of ⁷Be

Assemblea di Sezione | 28.3.22 | Bologna |

Neutron poison

^{155,157}Gd(n, γ) "burnable neutron poison"

Proposal (INFN) in close collaboration with ENEA

The uncertainty on Gd cross sections gives the largest contribution to the uncertainty on k_{eff} after ^{235,238}U.

- To increase the **efficiency** of **reactor fuel**, it is necessary to **increase** the initial **enrichment of** ²³⁵U in the fuel.
- High enrichments pose severe safety problems due to the **high initial excess reactivity.** This can be **inherently compensated** by loading the fuel with **"burnable neutron poisons"**, i.e. isotopes with very high capture cross section

Little Bacarde di Fisica Necleare

s-process branching

 63 Ni (t_{1/2}=100 y) first branching point determines abundance of 63,65 Cu

The measurement was performed in 2011 at n_TOF using an array of C_6D_6 detectors

The branching depends on the stellar condition, on the isotope half-life and on the neutron capture cross section

First high-resolution measurement of the ${}^{63}Ni(n, \gamma)$ reaction in the energy range of interest to s-process nucleosynthesis: «*The neutron capture cross-section of the s process branch point isotope* ${}^{63}Ni$ » **Phys. Rev. Letters 110 (2013) 022501**

Measurement of 238 U(n, γ)

MC simulation of n_TOF source

10⁻²

 10^{-1}

1

Geant4 simulation of the n TOF neutron source and transport to EAR1

20 GeV/c protons on lead

Neutron energy (eV)

 $10 \quad 10^2 \quad 10^3 \quad 10^4 \quad 10^5 \quad 10^6 \quad 10^7 \quad 10^8$

 10^{9}

¹⁴⁰Ce: Galactic chemical evolution

The pollution of AGB stars with a mass ranging between 3 to 6 MSUN may account for most of the features of the s-process enrichment of M4 and M22.

¹⁴⁰Ce: Galactic chemical evolution

s-only isotope

Dissemination

http://agenda.infn.it/event/GIANTS-IX

9th edition, Bologna 5-6 October 2017

Organizing committee composed by young researchers from **n TOF, ASFIN**,

Idea of a Newsletter of the italian group

composed bv researchers from different experiments.

1st number February 2018

https://www.facebook.com/infngiants/

Dissemination

Proton recoil telescope

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Measurement of the ²³⁵U(n,f) cross section relative to n-p scattering up to 1 GeV

May 06, 2017

L. Audouin', M. Barbagallo', N. Colonna², L. Cosentino', M. Diakaki^{1,4}, I. Duran⁵, P. Finelli^{4,2}, P. Finocchiaro', J. Heyse', S. Lo Meo^{1,2}, C. Massimi^{2,6}, P.F. Mastinu², P.M. Milazzo², F. Mingrone³, A. Musumarra^{2,0}, R. Nolte¹⁰, C. Paradela⁷, D. Radeck¹⁰, P. Schillebeeckx⁷, L. Tassan-Got¹, G. Vannin^{2,4}, A. Ventura²

1 CNBS-IN2P3, Univ. Paris-Sud, Univ. Paris-Saclay, Orsay, France ² INFN - sezioni di Bari, Bologna, LNL, LNS and Trieste, Italy CERN, Switzerland ⁴ National Technical University of Athens, Greece ⁴ Dinversidad et Santiago de Compostela, Spain ⁴ Dipartimento di Fisica e Astronomia, University of Bologna, Italy ⁷ European Commission, Joint Research Centre - Geel, Belgium ⁴ PiNRA - Bologna, Italy ⁹ Dipartimento di Fisica e Astronomia, University of Catania, Italy ¹⁰ Physikalisch-Technische Bundesanstalt, Braunschweig, Germany

Spokespersons: C. Massimi (massimi@bo.infn.it), R. Nolte (ralf.nolte@ptb.de) and L. Cosentino (cosentino@lns.infn.it) Technical coordinator: O. Aberle (oliver-aberle@cern.ch)

n_TOF facility is a unique tool for the cross section measurement of the ²³⁵U(n, f) reaction, relative to the H(n, n)H reaction, up to 1 GeV.

For this measurement a **Proton Recoil Telescope** has been developed and realized with fast scintillators and solid state detectors. It has been successfully tested in 2016 and 2017 at the n_TOF facility.

Proposal approved by the INTC committee, meeting 28.06.2017

1 PhD on this project

n_TOF collaboration

(BARC – Mumbai, India) CEA – Saclay, Francia CERN – Geneva, Svizzera CIEMAT – Madrid, Spagna ENEA – Bologna, Italia IFIC – Valencia, Spagna IFIN – Bucharest, Romania INFN, Italia IPNO – Orsay, Francia IST – Lisbon, Portogallo JAEA – Tokyo, Giappone JINR – Dubna, Russia JRC – Geel, Belgio KIT - Karlsruhe, Germania NTUA – Athens, Grecia PSI – Villingen, Svizzera PTB - Braunschweig, Germania

UBAS – Basel, Svizzera UEDB – Edinburgh, Regno Unito UGF – Frankfurt, Germania UGRAN – Granada, Spagna UIG – Ioannina, Grecia ULP – Lodz, Polonia UMAN – Manchester, Regno Unito UPC – Barcelona, SPagna UPRG - Prague, Repubblica ceca USC – Santiago, Spagna USE – Sevilla, Spagna UVIE – Vienna, Austria UYRK – York, Regno Unito UZAG – Zagreb, Croazia

Misura del rate di distruzione del ⁷Be

