# Attività del gruppo LHCb Bologna

Fabio Ferrari

Assemblea di Sezione

Bologna, 28 Marzo 2022

### Outline

- Overview generale sul gruppo e le sue attività
- Stato di LHCb per l'inizio del Run 3
- Attività di analisi dati
- Attività nel detector e R&D
- Conclusioni

# Responsabilità del gruppo

- Stefano Perazzini: convener del Charmless B decays and B to open charm WG e responsabile nazionale del calcolo per LHCb (fino a febbario 2022)
- Serena Maccolini: liaison della simulazione per il Charm WG
- Lorenzo Capriotti: convener del Production, polarization and spectroscopy WG
- Vincenzo Vagnoni: membro del LHCb Upgrade 2 planning group e responsabile nazionale LHCb
- Fabio Ferrari: resposabile della caratterizzazione dei fotomoltiplicatori per il sub-detector PLUME
- Angelo Carbone: responsabile della DAQ per il sub-detector PLUME

# Attività del gruppo

- Attività di analisi
  - Fisica del charm e decadimenti di mesoni B per misure di violazione di CP
- Attività di servizio per l'esperimento
  - Caratterizzazione dei PMT installati nel sub-detector PLUME
  - Sviluppo della DAQ per il sub-detector PLUME
  - Implementazione della geometria dei calorimetri nel framework DD4HEP

#### • Attività di R&D

- Sviluppo di simulazioni GEANT 4 per per il calorimetro di LHCb Upgrade-2
- Studio e caratterizzazione di rivelatori MCP-PMT per il loro impiego nella misura temporale per il calorimetro di LHCb Upgrade-2
- Sviluppo di simulazioni ANSYS per lo studio delle performance temporali di rivelatori MCP-PMT
- Terza missione
  - Masterclass, notte dei ricercatori, PCTO INFN

# Obiettivi di LHCb

- Osservare in maniera indiretta nuove particelle o nuove interazioni non previste nel Modello Standard:
  - Approccio complementare rispetto agli altri esperimenti di LHC
  - Invece di cercare nuove particelle prodotte direttamente nello scontro tra protoni o ioni si effettuano misure di precisione delle proprietà delle particelle note
- Nei plot a fianco, ogni banda colorata è la misura di un particolare parametro della matrice CKM ottenuto studiando le proprietà dei decadimenti di adroni con quark strange, charm e beauty



#### Oggi

#### 28/03/2022

# Il rivelatore LHCb nel Run 2

- Il rivelatore LHCb è uno spettrometro a singolo braccio in avanti
  - Accettanza geometrica ottimizzata per sfruttare le sezioni d'urto di produzione in avanti di adroni con quark beauty e charm
    - $\sigma_{bb} = 144 \pm 1 \pm 21 \ \mu b$  in accettanza [PRL 118(2017)052002]
    - $\sigma_{cc}$  ~ 20 x  $\sigma_{bb}$
- Caratteristiche fondamentali del rivelatore
  - Ottima risoluzione spaziale dei vertici primari e secondari  $\rightarrow \sigma_7 \sim 100 \,\mu\text{m}$
  - Ottima risoluzione in impulso
     → δp/p ~ 0.4-0.6 %
  - Eccellente identificazione delle particelle cariche



# Il rivelatore LHCb nel Run X3

- Di fatto un rivelatore (quasi) completamente nuovo
- Mantenuto meno del 10% dei canali del vecchio rivelatore
- 100% dell'elettronica di R/O rimpiazzata
- Nuovo Sistema di DAQ e nuovo datacenter





# Stato del rivelatore

• Rivelatori RICH, CALO, MUON e PLUME in fase avanzata di commissioning

#### • SciFi

- Installazione praticamente completata, in tempo per la chiusura della caverna
- Side C in commissioning da Ottobre 2021

#### Vertex Locator

- Side C installato
- Assemblaggio e test del side A in corso: installazione durante un Technical Stop dopo la chiusura della caverna

#### • UT

- Non sarà installato prima della chiusura della caverna
- Richiesta di Technical Stop esteso a Settembre per installazione side C
- Side A verrà installato durante il YETS 2022/23
- Commissionig in corso
  - Il 2022 sarà un anno di commissioning
  - La luminosità attesa da LHCb per il 2022 è modesta rispetto al totale del Run 3

### Attività di analisi

#### JHEP 03 (2021) 075

### Violazione di CP nei decadimenti $B^0 \rightarrow K^+\pi^-, B^0 \rightarrow \pi^+\pi^-, B^0_s \rightarrow \pi^+K^-, B^0_s \rightarrow K^+K^-$

- Stato finale senza quark c → i diagrammi di Feynman con loop sono rilevanti
  - Nuova fisica potrebbe emergere tramite contributi virtuali nei loop
  - Incertezze dovute a interazione forte
    - $\rightarrow$  necessità di combinare misure relative a molteplici processi
- LHCb è leader nello studio di questi decadimenti
  - Misure piú precise al mondo per asimmetria integrata nel tempo e asimmetria dipendente dal tempo
  - I risultati attuali coinvolgono i dati raccolti tra il 2011 e il 2016 (5  ${
    m fb}^{-1}$ )
- Prima osservazione di violazione di CP dipendente dal tempo per il mesone  $B_s^0$
- I dati raccolti tra 2017 e 2018 contengono ulteriori 4 fb<sup>-1</sup>, attualmente in fase di analisi da parte del gruppo di Bologna 28/03/2022



# Determinazione simultanea dell'angolo $\gamma$ della matrice CKM e dei parametri di mixing del charm

- Misure precise dei parametri della CKM posso evidenziare discrepanze rispetto alle predizione del Modello Standard (MS) che rappresenterebbero un chiaro segno di Nuova Fisica
- Angolo γ è l'unico parametro della CKM che può essere determinato utilizzando decadimenti treelevel → incertezza teorica trascurabile
- Le misure dirette dell'angolo γ non hanno ancora raggiunto la precisione delle determinazioni ottenuti tramite fit globali ai parametri del MS
- LHCb: combinazione simultanea di molti osservabili misurati tramite decadimenti di mesoni *B* e *D* per ottenere la miglior precisione possibile



$$\gamma_{\rm UTfit} = (65.8 \pm 1.9)^{\circ}$$

JHEP 12 (2021) 141

#### JHEP 12 (2021) 141

# Determinazione simultanea dell'angolo $\gamma$ della matrice CKM e dei parametri di mixing del charm



$$\gamma = \left(65.4^{+3.8}_{-4.2}\right)^{\circ}$$

- Determinazione più precisa al mondo da singolo esperimento
- Misura quasi competitiva con le determinazioni indirette (UTfit e CKM fitter)



- Determinazioni più precise al mondo di x e y
- Incertezza su y diminuita di un fattore 2 rispetto alla media mondiale

# Altre analisi in corso a Bologna



Ricerca di stati esotici prodotti dal vertice primario di interazione in stati finali  $J/\psi \pi^+\pi^-\gamma$ 



### Attività di servizio per l'esperimento

### PLUME: Probe for LUminosity MEasurement

- Ambienti con un'alta occupanza di tracce possono degradare le performance di tracking dei rivelatori
- Durante il Run 1 e 2 l'esperimento LHCb ha operato con una luminosità istantanea ridotta e mantenuta stabile riducendo la distanza tra i fasci di protoni durante il fill del LHC
- Nel Run 3 ci sarà un incremento della luminosità istantanea di un fattore 5
- Per questi motivi si è pensato di installare un detector appositamente dedicato per la misura online della luminosità: PLUME

# PLUME: Probe for LUminosity MEasurement

- PLUME è un odoscopio formato da 48 PMT disposti su due piani con una geometria proiettiva
- Ogni PMT è dotato di una tavoletta di quarzo incollata sulla finestra d'entrata del PMT stesso
  - Particelle provenienti dalla collisione *pp* generano luce Cherenkov nel quarzo che viene poi rivelata dai PMT
- Il rivelatore è installato a monte del rivelatore di vertice di LHCb, raccogliendo le tracce prodotte nella direzione backward





## Caratterizzazione dei PMT

- Il gruppo di Bologna ha caratterizzato 30 PMT sui 48 totali installati in PLUME
- Eseguite misure di gain, dark current, transit-time drift e linearità per ognuno dei PMT
- Dati aquisiti con digitizer DRS4 (5 GS/s) e picoamperometro Keithley 6485 (un ringraziamento ai colleghi di ATLAS-LUCID per la loro disponibilità)

Interno della dark box utilizzata per la caratterizzazione





# Studio dell'invecchiamento dei PMT dovuto alla carica integrata

- Necessità di studiare l'invecchiamento dei PMT con l'aumentare della carica integrata
  - Invecchiamento dovuto dalla fluenza di particelle già studiato in apposite facility
- Setup messo a punto a Bologna
  - Multimetro per misura continua della corrente anodica
  - Pulse generator per alimentazione LED e per misura del guadagno in regime di singolo fotoelettrone
  - DRS4 per acquisizione dati singolo fotoelettrone



# Studio dell'invecchiamento dei PMT dovuto alla carica integrata

- Integrati circa 340 C
  - Attesi circa 70 C/anno per PLUME, quindi i PMT sono stati testati per circa 5 anni di operazione, oltre la durata del Run 3
- Misura del gain a diversi valori di carica integrata
  - Riduzione di un fattore ~4 nei primi ~15 C di carica, poi lenta e costante decrescita

#### • I PMT dovrebbero sopravvivere tranquillamente al Run 3





Attività del gruppo LHCb Bologna

# PLUME DAQ e firmware

- Lo sviluppo del firmware è stato completato con il supporto (fondamentale!) del gruppo di elettronica dell'INFN
- Lo sviluppo consiste nell'adattare il firmware del calorimetro per:
  - Avere coincidenze tra i PMT
  - Avere contatori per misure in tempo reale di luminosità
- Il firmware è stato installato l'8 Febbraio scorso e dati di test sono stati acquisiti con successo
- Alcuni test riguardo l'integrazione con l'esperimento LHCb e con LHC sono in corso
  - PLUME fornirà misure precise di luminosità in tempo reale a LHC ogni 2/3 secondi

#### Firmware diagram



#### Firmware simulation



### Implementazione della geometria dei calorimetri nel framework DD4HEP

- DD4HEP è un pacchetto software utilizzato per l'implementazione della geometria del detector e la sua simulazione
  - Migrazione da GEANT 4 decisa dalla collaborazione LHCb
- Implementazione delle geometrie dei calorimetri completata
- Prossimo passo: simulazione della risposta del rivelatore



### Attività di R&D

### R&D su rivelatori

- Studi dedicati alla ricerca di soluzioni per la fase di Upgrade 2 di LHCb
  - Aumento di luminosità istantanea a 2x10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> → x10 luminosità istantanea Upgrade1



# R&D per il calorimetro elettromagnetico (ECAL) di LHCb Upgrade 2

- Obiettivo: costruire un rivelatore con le stesse performance di quello attuale che sopporti dosi ~ 1 MGy
  - Misura del tempo di arrivo delle particelle di fondamentale importanza per risolvere il pileup
- Attività di LHCb Bologna
  - Sviluppo di simulazione veloce per stabilire i parametri necessari in termini di granularità e risoluzione temporale
  - Caratterizzazione e sviluppo di un timing layer basato su microchannel plates (MCPs)



25

# Simulazione di ECAL per LHCb Upgrade 2

- Obiettivo: stabilire le risoluzioni spaziale, energetica e temporale necessarie all'ECAL per operare nelle condizioni di alta occupanza previste nel Run5 ad LHCb
- Sviluppo di una simulazione di veloce e flessibile per stimare le performance del detector su processi rilevanti per il programma di fisica dell'esperimento
- Risoluzione temporale tra 10 e 20 ps attualmente assunta come target per R&D del nuovo hardware



# Timing layer di ECAL per LHCb Upgrade 2

- Possibile soluzione: inserire un timing layer nell'ECAL per misurare il tempo di arrivo degli sciami elettromagnetici con risoluzioni temporali di 10-20 ps
- Tecnologia investigata: MCP-PMTs
- Possibile utilizzo anche con fotocatodo spento (problemi di invecchiamento precoce): la valanga viene iniziata dalla ionizzazione prodotta all'interno del MCP
- Idea già investigata in passato all'interno dell'INFN con il progetto di CSN5 i-MCP per Phase-2 HL-LHC



# LLMCP: Long Live the Micro Channel Plate!

- Progetto finanziato dal Gruppo 5 INFN
- Obiettivi principali del progetto
  - Caratterizzazione e ottimizzazione di rivelatori MCP di recente costruzione (LAPPD: Large Area Picosecond PhotoDetectors prodotto da Incom)
  - Sviluppo e test di nuove idee indirizzate a risolvere il problema legato all'invecchiamento precoce dei rivelatori MCP per poterli impiegare in ambienti ad alta rate di interazione

#### LLMCP – Long Live Micro Channel Plate

Responsabile Locale: <u>Vincenzo Vagnoni</u> Responsabile Nazionale: Vincenzo Vagnoni Unità di Ricerca: BO, LNF Durata: 2021 -2023

#### **Gruppo locale:**

V. Vagnoni, G. Bruni, L. Capriotti, F. Ferrari, D. Manuzzi, S. Perazzini, V. Vagnoni



Fondamentale il supporto e la disponibilita' da parte dei servizi officina meccanica, progettazione meccanica e elettronica della Sezione!

## Caratterizzazione del LAPPD

- Svariati test in laboratorio e su fascio di elettroni (DESY, SPS)
- Risoluzioni temporali nell'ordine dei 30 ps per elettroni da 5.8 GeV con il fotocatodo spento, che scendono fino a ~ 14 ps a 20 GeV
- Ad alte energie, risoluzione temporale con fotocatodo acceso comparabile a quella ottenuta con fotocatodo spento



### Esempio di setup messo a punto a Bologna



### Esempio di setup messo a punto a Bologna



### Alcune foto dai testbeam





# Studi sulla lifetime degli MCP

- Stack di MCP posti all'interno di una camera a vuoto e invecchiati tramite l'illuminazione con una lampada al mercurio
- Studio eseguito su due set di MCP: Baspik lead-glass MCPs (MCP 'tradizionali') e Incom MCPs (simili a quelli utilizzati per costruire il LAPPD)
- Un ringraziamento all'officina meccanica per i supporti e le flange e al centro di elettronica per voltage divider e PCB





28/03/2022

Attività del gruppo LHCb Bologna

# Studi sulla lifetime degli MCP

 Risultati preliminari: perdita di gain non sembra essere un problema per cariche integrate ~ 100 C/cm<sup>2</sup>



# Simulazione di un MCP

- Sviluppata una simulazione per studiare il comportamento degli elettroni emessi da un fotocatodo opaco depositato su una faccia del MCP
- Campo elettrico ottenuto da una simulazione agli elementi finiti tramite ANSYS
- Tracciamento degli elettroni implementato utilizzando classi sviluppate per Garfield++



# Simulazione di un MCP



### Attività di terza missione





### SOCIETYnext - Notte Europea dei Ricercatori



#### Quasi come essere al CERN

Misura della violazione di CP in decadimenti  $B^0 \rightarrow K^+\pi^-$  ad LHCb PCTO 07-11 giugno 2021



ALMA MATER STUDIORUM Università di Bologna



# Backup

### Determinazione simultanea dell'angolo $\gamma$ della matrice CKM e dei parametri di mixing del charm

- Modi di decadimento più sensibili:  $B^{\pm} \rightarrow DK^{\pm}$ 
  - Combinazione di molti canali per  $B'_{r_Be^{i(\delta_B+\gamma)}}$ ottenere la miglior precisione possible
- I decadimenti  $B^{\pm} \rightarrow D(\rightarrow K^{\mp}\pi^{\pm})K^{\pm}$  sono sensibili alla differenza di fase forte tra  $D \rightarrow$  $K^{-}\pi^{+} e D \rightarrow K^{+}\pi^{-}$  se i parametri di mixing del charm sono presi come input
- Per questo motivo, LHCb ha eseguito un'analisi simultanea



B decay

| D decay                       | Ref. | Dataset | Status since |
|-------------------------------|------|---------|--------------|
|                               |      |         | Ref. [17]    |
| $D  ightarrow h^+ h^-$        | [20] | Run 1&2 | Updated      |
| $D \to h^+ \pi^- \pi^+ \pi^-$ | [21] | Run 1   | As before    |
| $D \to h^+ h^- \pi^0$         | [22] | Run 1   | As before    |
|                               |      |         |              |

Input sperimentali utilizzati

|                                       |                                      |           |            | Ref. [17]    |
|---------------------------------------|--------------------------------------|-----------|------------|--------------|
| $B^\pm \to D h^\pm$                   | $D  ightarrow h^+ h^-$               | [20]      | Run 1&2    | Updated      |
| $B^\pm \to D h^\pm$                   | $D \to h^+ \pi^- \pi^+ \pi^-$        | [21]      | Run 1      | As before    |
| $B^\pm \to D h^\pm$                   | $D \to h^+ h^- \pi^0$                | [22]      | Run 1      | As before    |
| $B^\pm \to D h^\pm$                   | $D \to K^0_{\rm S} h^+ h^-$          | [19]      | Run 1&2    | Updated      |
| $B^\pm \to D h^\pm$                   | $D \to K^0_{\rm S} K^\pm \pi^\mp$    | [23]      | Run 1&2    | Updated      |
| $B^\pm \to D^* h^\pm$                 | $D \to h^+ h^-$                      | [20]      | Run 1&2    | Updated      |
| $B^\pm \to DK^{*\pm}$                 | $D \to h^+ h^-$                      | [24]      | Run 1&2(*) | As before    |
| $B^\pm \to D K^{*\pm}$                | $D \to h^+ \pi^- \pi^+ \pi^-$        | [24]      | Run 1&2(*) | As before    |
| $B^\pm \to D h^\pm \pi^+ \pi^-$       | $D  ightarrow h^+ h^-$               | [25]      | Run 1      | As before    |
| $B^0 \to DK^{*0}$                     | $D \to h^+ h^-$                      | [26]      | Run 1&2(*) | Updated      |
| $B^0 \to DK^{*0}$                     | $D \to h^+ \pi^- \pi^+ \pi^-$        | [26]      | Run 1&2(*) | New          |
| $B^0 \to DK^{*0}$                     | $D \to K^0_{\rm S} \pi^+ \pi^-$      | [27]      | Run 1      | As before    |
| $B^0 \to D^{\mp} \pi^{\pm}$           | $D^+ \to K^- \pi^+ \pi^+$            | [28]      | Run 1      | As before    |
| $B^0_s \to D^\mp_s K^\pm$             | $D_s^+ \to h^+ h^- \pi^+$            | [29]      | Run 1      | As before    |
| $B^0_s \to D^\mp_s K^\pm \pi^+ \pi^-$ | $D_s^+ \to h^+ h^- \pi^+$            | [30]      | Run 1&2    | New          |
| D decay                               | Observable(s)                        | Ref.      | Dataset    | Status since |
|                                       |                                      |           |            | Ref. [17]    |
| $D^0  ightarrow h^+ h^-$              | $\Delta A_{CP}$                      | [31 - 33] | Run 1&2    | New          |
| $D^0  ightarrow h^+ h^-$              | $y_{CP}$                             | [34]      | Run 1      | New          |
| $D^0  ightarrow h^+ h^-$              | $\Delta Y$                           | [35 - 38] | Run 1&2    | New          |
| $D^0 \to K^+ \pi^-$ (Single Tag)      | $R^{\pm},(x'^{\pm})^2,y'^{\pm}$      | [39]      | Run 1      | New          |
| $D^0 \to K^+ \pi^-$ (Double Tag)      | $R^{\pm},(x'^{\pm})^2,y'^{\pm}$      | [40]      | Run 1&2(*) | New          |
| $D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$   | $(x^2 + y^2)/4$                      | [41]      | Run 1      | New          |
| $D^0 \to K^0_{\rm S} \pi^+ \pi^-$     | x, y                                 | [42]      | Run 1      | New          |
| $D^0 \to K^0_{\rm S} \pi^+ \pi^-$     | $x_{CP}, y_{CP}, \Delta x, \Delta y$ | [43]      | Run 1      | New          |
| $D^0 \to K^0_{\rm S} \pi^+ \pi^-$     | $x_{CP}, y_{CP}, \Delta x, \Delta y$ | [44]      | Run 2      | New          |
|                                       |                                      |           |            |              |

# R&D per il calorimetro elettromagnetico di LHCb Upgrade 2

- Opzioni tecnologiche
  - Shashlik: tecnologia nota, ma inadatta alle zone a più alta radiazione
  - SPACAL: ottimo dal punto di vista della resistenza alla radiazione e della ottimizzazione della granularità Risoluzione temporale ancora non ottimale (migliorabile)

| Prototype      | Bias [V] | Time Res. [ps]               |
|----------------|----------|------------------------------|
| SpaCal         | 630      | 85 <sup>\$</sup>             |
|                | 730      | <b>78</b> <sup>\lambda</sup> |
| Shashlik       | 800      | 69                           |
| Small Shashlik | 1000     | 66†                          |
|                | 1000     | 177° †                       |

♦ Beam entering from the PMTs' side. <sup>†</sup> Noisy PMTs.



#### LHCb Bologna

- Studi con simulazioni veloci per stabilire i parametri necessari in termini di granularità e risoluzione temporale
- Risoluzioni temporali dell'ordine di 10-20 ps sembrano necessarie per ridurre il fondo combinatorio a livello di Run1