

C. Battilana (Univ. e INFN) per il gruppo CMS Bologna Assemblea di Sezione - Bologna - 28 Marzo 2022

Overview sulle attività del gruppo

operazioni, upgrade

Da più di dieci anni, il gruppo CMS Bologna risulta tra i primi tre gruppi italiani in termini di **partecipanti** e numero di **responsabilità ufficiali**

Da tempo, i nostri contributi spaziano su numerosi fronti Trigger (muoni) Software e Computing (at large), **Analisi: B-physics, Higgs** Rivelatori: camere per muoni, tracciamento ed identificazione di muoni hardware / software (incl. BSM), Top

Focus delle attività del gruppo all'oggi

CMS Run Coordination	Machine Learning - Deep Learning		Higgs (BSM)	
Drift Tubes: Project Management, Run-3 (operazioni, technical coordination), Fase-2, SW e Performance B-physics				
Gas Electron Multiplier (GEM)		Ricostruzione di muoni		
CMS Software Release Management				

Responsabilità bolognesi nella collaborazione CMS

Responsabilità di livello 1

Run Coordinator	Gianni Masetti
DT Project Manager	Daniele Fasanella (RWTH Aachen)
DT Deputy Project Manager	Carlo Battilana

Responsabilità di livello 2

DT Technical Coordinator	Lisa Borgonovi	
DT Deputy Run Coordinator	Gianni Masetti	
DT DPG Coordinator	Francesca Cavallo	
DT Deputy DPG Coordinator	Carlo Battilana	
DT Instituion Board Advisor	Marca Dallavalla	
Chair Muon Internal Scrutiny Group	- Marco Danavane	
Chair GEM Inst. Collab. Board	Paolo Giacomelli	
GRID Deployment Board	Daniele Bonacorsi	
Offline Software Release Manager	Andrea Perrotta	

Central CMS Run Coordination

Muon detectors (e.g. DT and GEM Detector Projects)

Offline and Computing

Responsabilità di livello 3

DT Power supplies	Lisa Borgonovi	
DT Minicrates	Gianni Masetti	
DT Upgrade Mechanics	Marco Dallavalle	
DT Longevity Task Force	Federica Primavera	
DT Trigger Coordinator	- Luigi Guiducci	
DT Phase 2 Trigger Studies		
DT Trigger Performance	Stefano Marcellini	
DT Prompt Offline Analysis	Francesca Cavallo	
DT Muon POG liason	Carlo Battilana	
RadSim Muon contatct	Sergio Lo Meo	
Computer Security Officer	Gian Piero Siroli	
Top Pub Comm (<u>co-chair</u>)	Andrea Castro	
Higgs Pub Comm	Paolo Giacomelli	
SMP Pub Comm	Marco Dallavalle	
Muon MC Generators contact	Alessandra Fanfani	
B Physics MC Generators contact	Leonardo Lunerti	
Higgs MC Generators contact	Tommaso Diotalevi	

Rivelatori: verso Run-3

Drift Tubes: sommario

D. Fasanella (ora RWTH Aachen) e C. Battilana, rispettivamente DT Project Manager e Deputy Project Manager

Drift Tubes (DT): utilizzate per il rivelatore di muoni di CMS nel barile ($|\eta| < 1.2$)

- Permettono tracciamento di muoni nel Level-1 trigger
- Principale rivelatore per identificazione/tracciamento di muoni nella ricostruzione offline (e ad HLT)
- Il gruppo di Bologna mantiene un ruolo fondamentale nelle attività del progetto DT, fin dai tempi del design del rivelatore e della sua costruzione.
- Per quel che riguarda il sistema attuale, siamo coinvolti in:
 Operazioni del rivelatore e coordinamento tecnico
 Misura di prestazioni e ottimizzazione del trigger
- Garantire il successo delle operazioni ed ottime prestazioni richiede una costante presenza al CERN di alcuni esperti ed un supporto remoto ancora maggiore

Partecipiamo inoltre all'upgrade di Fase-2 del rivelatore per High-Luminosity LHC

DT Technical coordination: milestones ed attività in LS2

- Completata l'installazione di uno "schermo" (Alberto's shielding) per mitigare l'impatto del background presente in caverna sulla metà superiore delle camere esterne (<u>e prevenirne l'invecchiamento</u>)
- Maintenance sul rivelatore sfruttando l'accesso alle ruote:
 - ▶ Riparata elettronica on-board di 25 camere
 - Interventi sulla distribuzione delle alte tensioni: isolati singoli canali non funzionanti
- Supporto ad interventi sulle RPC (riparazione di perdite nel loro circuito del gas)
 ~70/250 camere disconnesse, estratte parzialmente (insieme alle RPC), poi riconnesse e testate
- Estrazione totale di una camera
 - ▶ Recupero delle funzionalità di misura nella coordinata longitudinale
- Manutenzione/upgrade del sistemi di controllo e monitoring del rivelatore (DCS, DSS)

Attività "storicamente" bolognese (A. Benvenuti, D. Fasanella, ...) L. Borgonovi è Technical Coordinator per le DT

Indispensabile supporto da: V. Cafaro, A. Crupano, V. Giordano

DT Technical coordination: milestones ed attività in LS2

- Completata l'installazione di uno "schermo" (Alberto's shielding) per mitigare l'impatto del background presente in caverna sulla metà superiore delle camere esterne (<u>e prevenirne l'invecchiamento</u>)
- Maintenance sul rivelatore sfruttando l'accesso alle ruote:
 - ▶ Riparata elettronica on-board di 25 camere
 - Interventi sulla distribuzione delle alte tensioni: isolati singoli canali non funzionanti

- Estrazione totale di una camera
 - ▶ Recupero delle funzionalità di misura nella coordinata longitudinale
- Manutenzione/upgrade del sistemi di controllo e monitoring del rivelatore (DCS, DSS)

Attività "storicamente" bolognese (**A. Benvenuti**, **D. Fasanella**, ...) **L. Borgonovi** è **Technical Coordinator per le DT**

Indispensabile supporto da: V. Cafaro, A. Crupano, V. Giordano

DT Detector Performance Group

Il Detector Performance Group (DPG) si occupa di: sviluppo di software (simulazione, ricostruzione, ...), analisi delle prestazioni di rivelatore e trigger locale, verifica della qualità dei dati raccolti

Attività recenti (esempi)

Analisi dei dati di collaudo durante LS2

• Ed ottimizzazione dei programmi di monitoring

Sviluppo di programmi di analisi per il dimostratore dell'upgrade di Fase-2

hit efficiency media per super-layer

- Analisi dettagliata del background con dati di Run-2 Importante nel contesto degli studi di invecchiamento delle camere
 - Affligge principalmente le **stazioni interne**^[1] delle **ruote** esterne (alto η) e i settori superiori della stazione esterna^[2]

s = 13 TeV (2018) 1.45 fb

DT Detector Performance Group

Il Detector Performance Group (DPG) si occupa di: sviluppo di software (simulazione, ricostruzione, ...), analisi delle prestazioni di rivelatore e trigger locale, verifica della qualità dei dati raccolti

Attività recenti (esempi)

Analisi dei dati di collaudo durante LS2

• Ed ottimizzazione dei programmi di monitoring

Sviluppo di programmi di analisi per il <u>dimostratore dell'upgrade di Fase-2</u>

Analisi dettagliata del background con dati di Run-2
 Importante nel contesto degli studi di invecchiamento delle camere

Affligge principalmente le stazioni interne ^[1] delle ruote
 esterne (alto η) e i settori superiori della stazione esterna ^[2]

DT Detector Performance Group

Il Detector Performance Group (DPG) si occupa di: sviluppo di software (simulazione, ricostruzione, ...), analisi delle prestazioni di rivelatore e trigger locale, verifica della qualità dei dati raccolti

Attività recenti (esempi)

Gas Electron Multiplier: overview

Gas Electron Multiplier (GEM): utilizzate per l'upgrade del rivelatore di muoni (regione *in avanti:* |η| >1.6)
 Migliori prestazioni per il Level-1 (standalone) muon trigger
 Estensione dell'accettanza: da |η| <2.4 a |η| <2.8
 Ridondanza: migliorano ricostruzione ed identificazione

▶ GE2/1 ed MEO verranno installate in LS3

► GE1/1 in funzione già in Run-3

Coinvolgimento di CMS Bologna

- Preparazione (building 904)
 - rivelatori, servizi, cavi di HV / LV
- Sul detector:
 - ▶ installazione, servizi, cabling

P. Giacomelli è Chair del GEM Institution Board Importante contributo da: V. Cafaro

Installazione e collaudo di GE1/1

Completata (10/2019) - fully commissioned **GE-1/1 negative endcap**

GE+1/1 positive endcap

Operazioni: verso Run-3

> Attività e milestones della CMS Central Run Coordination

 2021: organizzazione di *lunghi* periodi di presa dati senza (5 settimane) e con (1 settimana) campo magnetico a 3.8 T

> Obiettivo: raccolta dati per allineamento preliminare del tracciatore interno

2021: LHC beam test - due settimane di operazioni a 900 GeV (2 nb⁻¹ raccolti, <PU> = 0.1)

Perfect and successful rehearsal for Run-3 operation (cit.) malgrado le restrizioni dovute al COVID!
 Verifica generale dello stato dei rivelatori dopo LS2 (prime collisioni per il rivelatore GE1/1 completo)
 Verifica delle procedure automatiche da injection a stable-beams

2022: operazioni continuative (24/7) da Marzo

Campo magnetico stabile a 3.8 T dal 4 Marzo

► ~3 settimane di cosmici: allineamento del tracciatore e calibrazione/sincronizzazione dei rivelatori

Caverna sperimentale chiusa dal 24 Marzo

G. Masetti è **Run Coordinator di CMS** (inoltre è coinvolto da lungo tempo nelle operazioni delle DT, ora è **DT Deputy Run Coordinator**)

Operazioni: DT e GE1/1 in eventi di collisione

Ricostruzione di muoni in eventi di collisione con fasci di test (Ottobre 2021)

Operazioni: DT e GE1/1 in eventi di collisione

Ricostruzione di muoni in eventi di collisione con fasci di test (Ottobre 2021)

Upgrade delle DT per HL-LHC

DT: irraggiamento e invecchiamento

Verifica delle le prestazioni delle DT in vista di HL-LHC

- Prima serie di risultati in <u>CMS-TDR-016</u>, rifiniti per <u>CMS-TDR-021</u>
 Degrado di prestazioni "accettabile" (detector ridondante)
 Implementate misure (es. <u>shielding</u>) per ridurre l'invecchiamento
- Dal 2018, è in corso una seconda fase di irraggiamento di una frazione di camera MB2 di scorta presso la GIF++ del CERN
 - Obiettivo: fornire risultati finali entro la fine dell'anno per una dose equivalente a ~3 (2) x HL-LHC
 - Irraggiamento e presa dati (cosmici/test-beam) fino all'estate
 - ▶ Test-beam com muoni dall'SPS (fine di Aprile)

Importante anche l'attività di coordinamento tecnico al CERN

Upgrade di Fase-2 delle DT

Rimpiazzo dell'elettronica motivato da:

- Radiation hardness
- Vincoli di rate e latenza dal Level-1 trigger di Fase-2
- Notevole semplificazione dell'elettronica on-detector
 - ▶ Robustezza, manutenzione, ...

Complessità spostata nel backend (FPGA)

 Possibile utilizzare algoritmi di trigger con prestazioni simili alla ricostruzione offline

L. Guiducci coordina il DT Phase-2 Trigger Studies Group

Dimostratore per l'upgrade di Fase-2 (slice-test)

- DT slice-test dimostratore equipaggiato con la prima versione dei prototipi dell'elettronica on-detector di Fase-2 (OBDTv1)
 - **Setup misto** di elettronica legacy e di Fase-2
 - Installato in LS2: test per integrazione di componenti e servizi sul detector
 - All'inizio di Run-3 (ora): segnali di Front-End inviati in parallelo ad elettronica legacy e nuovi prototipi
- Utilizzo di FPGA basate su Virtex7 come proxy per backend
- Notevole livello di integrazione in CMS
 - Acquisizione, detector control, monitoring

L. Borgonovi, D. Fasanella, V. Cafaro, A. Crupano, V. Giordano, L. Guiducci, L. Lunerti, S. Marcellini, C. Battilana

Performance dello slice-test e piani a medio termine

- Lo slice-test è stato operato regolarmente e collaudato durante LS2, dimostrando:
 - Prestazioni di ricostruzione identiche al sistema legacy
 - L'utilizzo della full-detector-granularity nel trigger
 - Es.: risoluzione temporale di ~3 ns (trigger attuale 25 ns)
- Analisi effettuate con raggi cosmici da ripetere in Run-3

segnagli da FE duplicati e portati in balconata

- Installazione della versione finale dell'elettronica on-detector (OBDTv2) dello slice-test durante lo Year End Technical Stop 22-23
 - Tra le nuove funzionalità: passaggio da GBT a lpGBT
 Primi prototipi validati, prossima produzione (6-12 mesi)

Segnali da alcuni Front-End di una camera esterna duplicati e:

- Inviati ad una OBDTv2 installata all'interno della camera
- ▶ Rediretti in balconata per test con ulteriori prototipi

Cosmic-stand ed elettronica per Fase2

Attività di ristrutturazione nell'area del laboratorio CMS al piano -1 (Berti Pichat), <u>è terminata</u> (ritardi dovuti al COVID)

Pulizie, risistemazione arredi e infrastrutture ~70%

- Completata la costruzione di due CMS mini-DT (a Legnaro) per il telescopio cosmici
 Installazione a Bologna ASAP
- Infrastrutture tecniche disponibili:
 - ► Gas (Ar/CO2 85/15%, ma gas mixer ternario)
 - High Voltage
 - Low Voltage (alimentazione e controllo FE sviluppato da M. Zuffa)
 - ► Controllo e readout (prossima slide)

Trigger basato su scintillatori in preparazione

P. Giacomelli, L. Guiducci, G. Paggi, V. Cafaro, A. Crupano, V. Giordano

new mini-DT power & FE control board

Stato e piani elettronica di Fase2 per mini-DTs

Elettronica per la lettura delle camere pronta a Bologna

- Utilizzo della chain prototipale di Fase-2 (stessi tool usati per lo slice-test)
 - Scheda OBDTv1, riceve segnali di FE, contiene 256 TDC triggerless da ~0.8 ns
 - TDC hit ricevuti da una scheda basata su Virtex7 che gestisce clock e slow control della OBDT (funzionalità di backend) ed implementa acquisizione dati via ethernet

Prossimi sviluppi dell'elettronica

- Xilinx VC707
 Ethermet cable

 (clock & slow control,

 (radout, test patterns)

 FM-S14 mezzanine

 FM-S14 mezzanine

 FE adapter

 FE cables

 FE cables

 OF Clock/

 Setup di test del readout mini-DT
- ▶ Transizione del backend a FPGA di tipo UltraScale, più vicino all'architettura di FPGA di Fase-2 (~2 mesi)
- Passaggio a OBDTv2, prossima produzione (6-12 mesi)
- Passaggio al backend finale, basato su schede ATCA custom, sviluppate in collaborazione con Università di Ioannina (Grecia) (~1 anno)

Meccanica per l'elettronica on-detector

Il gruppo ha responsabilità anche sullo sviluppo della meccanica che supporterà l'elettronica on-board di Fase-2

- Il progetto è ad un ottimo stato di avanzamento
 - Un mock-up della meccanica è stato installato in una camera di scorta verificando: installazione, cabling e tempistiche della sostituzione
 - ► Le scelte finali inerenti alle varie componenti sono in fase di finalizzazione (o già finalizzate), prima di ordini e produzione

A partire dal 2023 fino al 2025, circa 60 MiC2 saranno assemblati, cablati e testati a Bologna

M. Dallavalle è responsabile per DT Upgrade Mechanics Prezioso contributo di: C. Guandalini (e il Servizio di Progettazione Meccanica), V. Cafaro, A. Crupano, V. Giordano

Software e computing

Ricostruzione e monitoraggio di muoni

- Da lungo tempo coinvolti nelle attività del Muon Physics Object Group (POG)
 Es: integrazione e studio di algoritmi per il Muon HLT in Fase-2: <u>CMS-TDR-22</u> (Sep. 2021) (F. Primavera)
- Sforzo in corso per unificare, all'interno del sistema-muoni, le attività dei diversi sottorivelatori, per ottimizzare efficienza ed uso delle risorse
- Sviluppo software ed detector performance sono i campi dove l'unificazione è più avanzata:
 - ► Geometria: sviluppi per Fase-2, migrazione a DD4Hep (S. Lo Meo)
 - Monitoraggio: sviluppo di programmi comuni per il controllo della qualità dei dati (L. Lunerti)
 - > Strumenti di analisi: formati di dati comuni ed automatizzazione dei workflow di produzione (C. Battilana)
 - Simulazione ed analisi del background (F.R. Cavallo, S. Lo Meo)

CMS Software Framework Release Management

CMS Software Framework (CMSSW):

componente chiave (comune) di tutte le attività che coinvolgono *event-data*

• Un ciclo di sviluppo e alcuni cicli di produzione attivi nello stesso momento

► O(80) software releases and pre-releases prodotte ogni anno

A. Perrotta è CMS Offline Software Release Manager

Attività tecniche e R&D sul fronte ML per HEP a guida di giovani(ssimi)

Big Data Analytics per digital twins di componenti del modello di calcolo di CMS (S. Rossi Tisbeni, S. Gasperini)

Green computing e green AI su centri di calcolo di nuova generazione (F. Minarini)

Impulso e prospettive ad alcune di queste attività verrà anche dal coinvolgimento di colleghi CMS-Bologna in bandi di varie Misure nel **PNRR** (bando **Centro Nazionale HPC**, bando **Partenariato AI**, bando **Infrastrutture**, etc)

Analisi

Beyond Standard Model $H \rightarrow \mu \mu$

T. Diotalevi (tesi PhD), L. Anzalone S. Marcellini, F. Primavera, G. Masetti, T. Diotalevi è anche Higgs MC Generators contact

- Storicamente, analisi svolta quasi esclusivamente a Bologna
 - Stato finale sfavorito rispetto a ττ, ma l'analisi rimane competitiva grazie alla elevata risoluzione in massa
 - ▶ Pubblicati i risultati con <u>dati del 2016 a 13 TeV</u>, e con <u>dati a 7 e 8 TeV</u>
- La nuova analisi utilizza tutti i dati raccolti durante il Run2 (~137 fb⁻¹)
 - Sensibilità fino a masse di ~1.5 TeV
 - ► Target per la pubblicazione: conferenze estive
- Nuova selezione degli eventi basata sull'uso di una rete neurale parametrica:
 - ▶ Unico training per tutte le ipotesi di massa considerate: [130,1500] GeV
 - Migliore efficienza di segnale e reiezione del fondo rispetto all'approccio cut-based

Ricerca di neutrini di Majorana nel decadimento $D_s{}^\pm{}\rightarrow{}\pi{}^\mp{}\mu{}^\pm{}\mu{}^\pm{}$

Interazione di un neutrino pesante di Majorana con il Modello Standard (Bodarenko et al.):

$$\mathcal{L}_{\rm int} = \frac{g}{2\sqrt{2}} W^+_\mu \overline{N^c} \sum_{\alpha} U^*_\alpha \gamma^\mu (1-\gamma_5) \ell^-_\alpha + \frac{g}{4\cos\theta_W} Z_\mu \overline{N^c} \sum_{\alpha} U^*_\alpha \gamma^\mu (1-\gamma_5) \nu_\alpha$$

B-Parking: ampio dataset, circa 10¹⁰ eventi, di adroni con b selezionati in maniera inclusiva

- Studio del canale $B_s \rightarrow D_s \mu v_{\mu} X$, il **migliore per rapporto segnale/fondo**
- Segnatura del segnale: vertice μ[±] π[∓] lontano dal vertice d'interazione (vita media neutrino di Majorana ~1/m_N⁵ |U|²), due muoni con la stessa carica provenienti dal decadimento del mesone D_s
- ► Utilizzo dei decadimenti $D_s \rightarrow \phi(\rightarrow \mu\mu) \pi e D_s \rightarrow \phi(\rightarrow KK) \pi$ come canali di riferimento e di normalizzazione (entrambi i D_s provengono dal decadimento $B_s \rightarrow D_s \mu \nu_{\mu} X$)
- Prima analisi che cerca neutrini di Majorana nel settore del charm in CMS

L. Lunerti (tesi PhD), L. Guiducci, G. Abbiendi L. Lunerti è anche B-physics MC Generators contact μ_{trig} μ^{\pm}

 B_s

Sommario

- Le attività recenti proseguono la linea di ricerca seguita dal gruppo da tempo:
 Rivelazione e tracciamento di muoni (offline e trigger), Software & Computing, Analisi
- Drift Tubes
 - Contributo dominante alle attività del sistema attuale
 - Importanti ruoli nell'upgrade di Fase-2
- Partecipazione all'upgrade dello spettrometro per muoni tramite l'uso di GEM
- ▶ Il Run Coordinator di CMS è membro del gruppo CMS Bologna
- Software & Computing
 - Contributi nel Software Release Management, e in Computer Security
 - Attività di R&D tramite l'uso di Machine-Learning / Deep-Learning
- Analisi:
 - **•** Beyond Standard Model $H \rightarrow \mu\mu$
 - ▶ Neutrini di Majorana nel decadimento $D_{s^{\pm}} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$

La collaborazione del personale tecnico della sezione è fondamentale per il successo delle nostre attività

Grazie per l'attenzione

Backup

Background nelle camere DT(1)

Il background causato nei DT dalle collisioni di LHC è potenzialmente pericoloso in termini di invecchiamento del detector (e, in parte, in termini di performance di ricostruzione e trigger). È stato osservato e studiato in dettaglio con i dati di Run-2.

Le regioni più affette sono le **stazioni interne** delle **ruote esterne (alto** η) e **i settori superiori** della **stazione esterna**

Background nelle camere DT (2)

Recentemente è stato sviluppato un metodo per quantificare separatamente le due componenti principali del background:

- quella *prompt*, proveniente dall'interno come *leak* dei calorimetri (specialmente attraverso il gap tra barrel e forward)
 - quella *delayed*, asincrona rispetto alle collisioni, che "ristagna" nel detector e nella caverna.

Il rate misurato in funzione del Bunch Crossing viene fittato con un termine **P1** proporzionale alla luminosità corrispondente in media a ciascun BX + un termine costante **P0**.

- **P1** rappresenta la componente *prompt*
- PO rappresenta la componente delayed

Operazioni nel 2022: timeline fino all'intensity ramp-up

Offline muon reconstruction with ageing scenarios

- A DT chamber has multiple layers: out of 8 *r*- φ layers, \geq 3 are needed to build an offline segment
- The muon system is redundant: in the region of the DTs most affected by ageing, there is a coverage of 3 DT/CSC stations + 4-5 RPC layers along the trajectory of a prompt muon
- The single hit inefficiency of the YB+/-2 MB1s has hence "just" a marginal impact on overall standalone muon reconstruction efficiency

DT: performance del trigger locale di Fase-2 (simulazioni)

Esempio d'uso del trigger DT in Fase-2

Here we show a possible solution for configuring an actual HSCP trigger during data taking.

A cut $\beta < 0.7$ is applied to the HSCP trigger logic (orange). This is needed to avoid triggering on prompt muons.

In **red** we show the logical OR between the HSCP trigger and the Prompt Muon trigger.

Acceptance is extended down to $\beta \simeq 0.35$, e.g. 40% increase in selection efficiency on this $\tilde{\tau}$ sample

DT slice-test present setup overview

The slice test backend is based on Phase-1 boards (TM7), used for:

- ▶ Slow control (MOCO)
- ▶ Trigger primitive generation and event-building (AB7)
 - A single AB7 processes data from up to 3 OBDTs
 - ▶ Trigger primitive generation performed with the <u>Analytical Method algorithm</u>

(Virtex 7 XLXXC7VX330T-3FFG1761E)

Slice Test RO/trigger chain

(*) event building and trigger primitive processing

Phase-1 DT RO/trigger chain

Panoramica dell'upgrade di Fase-2 di CMS

L1-Trigger HLT/DAQ

https://cds.cern.ch/record/2714892 https://cds.cern.ch/record/2759072

- Tracks in L1-Trigger at 40 MHz
- PFlow selection 750 kHz L1 output
- HLT output 7.5 kHz
- 40 MHz data scouting

Barrel Calorimeters

https://cds.cern.ch/record/2283187

- + ECAL crystal granularity readout at 40 MHz with precise timing for e/γ at 30 GeV
- ECAL and HCAL new Back-End boards

Muon systems

https://cds.cern.ch/record/2283189

- DT & CSC new FE/BE readout
- RPC back-end electronics
- New GEM/RPC 1.6 < η < 2.4
- Extended coverage to $\eta \simeq 3$

Beam Radiation Instr. and Luminosity http://cds.cern.ch/record/2759074

• Bunch-by-bunch luminosity measurement: 1% offline, 2% online

Calorimeter Endcap

- https://cds.cern.ch/record/2293646
- 3D showers and precise timing
- Si, Scint+SiPM in Pb/W-SS

CMS

The Phase-2 Upgrade of the CMS Endcap Calorimeter Technical Design Report

Tracker https://cds.cern.ch/record/2272264

- Si-Strip and Pixels increased granularity
- Design for tracking in L1-Trigger
- Extended coverage to $\eta\simeq 3.8$

MIP Timing Detector

https://cds.cern.ch/record/2667167

- Precision timing with:
 - Barrel layer: Crystals + SiPMs
 - Endcap layer: Low Gain Avalanche Diodes

