

The RadioNuclide Metrology Team (RN)

Equipped and organised for supporting and watching over radioactivity measurements in Europe

Mikael Hult, team-leader

RN-team – operating <u>unique</u> infrastructure

Both included in JRC's open access programme since 2014 https://ec.europa.eu/jrc/en/research-facility/open-access

RADMET laboratory

An "armada" of unique instruments.

This enables international equivalence for radioactivity measurements

HADES underground laboratory (-225 m) (see video)

An "armada" of specially designed gamma-spectrometers

It supports many JRC-projects and <u>interdisciplinary nuclear science</u> <u>applications</u>

RN represented at the highest levels

- CCRI Consultative Committee for Ionising Radioactivity (at BIPM)
- ICRM International Committee for Radionuclide Metrology
- Euramet Technical Committee (TC) for Ionising Radiation
- EC-Liaison with TCs in IEC and ISO
- Collaboration agreements with IAEA, WHOI, SCK CEN, CEA, CIEMAT,

PTs and RMs for ~ 300 labs

It enables:.....

- DG ENER and national authorities to check labs – each year!
- Labs to obtain accreditation
- Labs to discover errors and improve
- Input for European standards
- Realisation of Euratom treaty Art. 35 &39

Proficiency Tests in support of Article 35 (since 2003)

Year	Matrix	Radionuclide(s)			
2010	Soil	⁴⁰ K, ¹³⁷ Cs, ^{212/214} Bi, ^{212/214} Pb, ²²⁶ Ra, ^{230/232} Th, ^{234/235/238} U, ^{238/239/240} Pu, ⁹⁰ Sr			
2011	Bilberry	⁹⁰ Sr, ¹³⁷ Cs, ⁴⁰ K			
2012	Water	Total α / ß activity			
2014	Air filter	¹³⁷ Cs			
2017	Maize	¹³⁴ Cs, ¹³⁷ Cs, ¹³¹ I			
2018	Water	Radon			
2019	Water	Total α / ß activity			
2020	Building materials	²²⁶ Ra, ⁴⁰ K, ²²⁸ Ra, ²²⁸ Th			
2016	Air filter	134,137Cs, 131 (MetroERM reserach-projec			

REM Proficiency Tests: ttps://remon.jrc.ec.europa.eu/Services/Proficiency-Tests

World-leading lab for reference materials production

2011-2021:

- 30,000 units CRM
- 6,000 units radioactive CRM
 - 30 different matrices

300 labs depending on PTs and RMs from JRC

Big demand for future support from Member States!

- More matrices
- More radionuclides
- More Certified Reference Materials
- PTs for sampling
- More frequent PTs

Requires flexibility, expertise & research

What of Chernobyl happened today?

How is the status of radioactivity monitoring in Europe?

Can we only detect major releases?

Can we use monitoring data for science?

https://publications.jrc.ec.europa.eu/repository/handle/JRC117258?mode=full

Foundation for international equivalence – Article 8

 International equivalence of radionuclides and traceability to the unit Bq

Can we trust each others measurements? Trade!

Needs implementation for every radionuclide...

Definition of a Bq: (s⁻¹).. But not so simple in reality

Above: The CsI detector at JRC-Geel on which part of the international reference system for radioactivity relies

Foundation for international equivalence – Article 8

Compare with "the old" realisation of the unit kg

As a figure of speech one could say that each radionuclide is "a kg"

Above: The CsI detector at JRC-Geel on which part of the international reference system for radioactivity relies

Foundation for international equivalence – Article 8

Above: The CsI detector at JRC-Geel on which part of the international reference system for radioactivity relies

Foundation for international equivalence – Article 8

Using the same instruments

• Provision of **decay data** for <u>the needs of modern society</u> nuclear medicine (theranostics, alpha-immunotherapy), industry, science, radioprotection,..

 Lots of parameters to measure in just one decay

Nuclear Science Applications in HADES (-225 m)

https://publications.jrc.ec.europa.eu/repository/handle/JRC120311

- Support a multitude if JRC-projects
- Gives member state scientists access to novel technology – interdisciplinary!
- Euratom treaty Art. 6 and Art. 4 +Annex I

See selected case-stories from 162 scientific articles

- -Mapping ocean currents
- -The world's oldest living organism?
- -Least radioactive space on Earth
- -Most long-lived isomeric state in Universe
- -How to cultivate on contaminated soil
- -CO₂-free concrete
- -Solving the Hiroshima enigma

-....

HADES

HADES = High Activity Disposal Experimental Site

- Operated by EURIDICE and located at SCK CEN in Mol
https://www.youtube.com/watch?v=CqcT9ny0hZA

Water sample from the Pacific after Fukushima

CELLAR

- Collaboration of European Low-level underground LAboRatories
- Network for underground radioactivity labs since 2000
- 14 meetings, last one December 2018 in Monaco (IAEA)
- 13 partners, 2nd renewal of collaboration agreement ongoing

Mission: To promote higher quality and sensitivity in ultra low-level radioactivity measurements for the improvement of crisis management, environment, health and consumer protection standards of Europe.

One example of a project CELLAR to which several labs collaborated

Monitoring of leakage of charged particles from fusion plasma

Motivation for CELLAR: Many samples arriving in short period of time (from fusion experiment). Some radionuclides have relatively short half-lives (days/weeks) ⇒ Many detectors/labs needed in short period of time (a few weeks)

Experiments in JET 2004-2009 (1st reported at ICRM-conference 2005)

Samples from first experiment at JET

JET - 2005 Irradiation during multiple plasma

pulses

Sample	Reaction	Threshold (MeV)	σ•θ
B ₄ C	$^{10}{\rm B}({\rm p},\alpha)^{7}{\rm Be}$	0,5	7,9
LiF	⁶ Li(d,n) ⁷ Be	0,1	0,4-0,5
LiF	⁶ Li(p,n) ⁷ Be	1,5	51-55
			,

 $[\sigma = cross section]$

 $[\theta = isotopic abundance]$

Activation probe at KSTAR 2015

CELLAR (Collaboration of European Low-level underground LAboRatories)

Institute /	depth (m)	Location	Number of HPGe-	Muon reduction	useu
Laboratory	depth (m w.e.)		detectors	factor	count rate 100-2000 keV cpd kg ⁻¹ of Ge
INFN-LNGS/ STELLA	1400 3500	Apennine mountains, Italy	14	1,000,000	458
Canfranc	850 2450	Spanish Pyrenees	8	40,000	142
JRC-Geel / HADES	225 500	Mol, Belgium (SCK CEN)	11	5,000	162 - 512
IRSN / LSM	1700 4800	The Alps, France	3 out of the 20	3,600,000	124
VKTA / Felsenkeller	47 125	Dresden, Germany	7	30	2090

For the detector

LISEC

LiF measurements at Modane & Felsenkeller

LiF results ⁷Be

Position in the stack 9 8 7 6 A (mBq) 10 B(p, α) 7 Be ◆ Total 3 ■ A due to 14 MeV p at 90° 2 ▲ A due to 3 MeV p at 90° 0 0,4 8 • 14.7 MeV 45° 0,3 3.0 MeV 45° 3.0 MeV 90° • 14.7 MeV 90° 0,2 16 14.7 MeV 45° 14 3.0 MeV 45° 14.7 MeV 90° 12 3.0 MeV 90° E (MeV) 6 4 2 0,2 0,8 0,4 0,6 0 Depth (mm)

3 MeV vs 14 MeV protons

Training & Education

- Depends on expertise gained from RN key activities
- Courses for/in connection/supporting:
 - European Enlargement & Integration,
 - JCPOA,
 - European monitoring labs,
 - National Metrology Institutes,
 - JRC staff,
 - Commission staff,
 - Universities

Belgrade

Thank you

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Slide xx: element concerned, source: e.g. Fotolia.com; Slide xx: element concerned, source: e.g. iStock.com

