WP5.4: New technology for radon-free environments

Christophe Vescovi - 28/04/2022

Introduction
The Radon problem
Goals of WP5.4
Partners and facilities
Deliverables

Introduction

- As other WP, this WP is very low on equipment costs
 - Focus on what can be done with existing facilities
- Coordination of efforts
 - Rn experts (detection, transport, trapping)
 - Underground lab facilities
- Increase expertise
 - DUL facilities
 - Experiments

The Radon Problem

- Radon (Rn) is a radioactive, noble gas
- Most stable isotope is ²²²Rn (3.8 day)
 - ²³⁸U decay chain
 - Some annoying daughters :
 - 210 Pb (22.3 year) → 210 Bi → 210 Po
- Radon mitigation is critical in low background environment
 - Radon emanation
 - Radon transport
 - Radon daughter deposition

Radon background sources

Two mains background sources

Direct Background (direct presence of radon)

Uncorrelated Background (material deposition)

Goal 1: Radon-free air

- Radon abatement systems are in operation in DUL since 2005 (LSM/ATEKO)
- Principle: Rn adsorption on an activated charcoal bed
 - Trap Rn in charcoal (adsorption) long enough for it to decay
 - Adsorption efficiency: material choice, material quantity (adsorption surface), temperature
 - compressed air → dryer → cooler → charcoal tower → radon-free air
- Needs for higher and higher radon-free air flow rates (up to 1000 m³/hr)
 - Radon-free clean rooms
 - Scaling of existing systems is an issue :
 - Dimensions
 - Power consumption : ~ 70kW for 300m³/hr

Cuore Rn abatement system (150 m³/hr)

Goal 1: Radon-free air

- Improving Radon trapping
 - Studies on new adsorption materials
 - Lower operating temperatures

- Improving power consumption
 - Systematic studies on system operation points (temp/pressure)
 - Influence of pressure on efficiency is not well documented
 - Replacement of air compressors by air turbines
 - 90% of power consumption is due to air compressors
 - Air turbine can efficiently provide high flow rate if low pressure operation

Goal 2 : Radon in pure gases

- Ar, Xe, He are intensively used in underground physics experiment detectors
- Cost and radiopurity issues
 - Liquefaction, Purification, Recycling
- Studies on transport and emanation of Rn in those gases
 - Temperature dependency
 - In liquid-gas phase
- Radon trapping in Xe
 - Rn and Xe have very close atomic radius
 - Development of innovative adsorbents with high Rn/Xe selectivity
- Rn transport and emanation in other detectors materials
 - Soft materials (eg. gaskets), liquid scintillators, organic vapors (alcohol)

Goal 3: Radon Monitoring

- Detectors for ultra-low Rn activities
 - Detection of leaks, emanation, diffusion, along Rn-free air distribution system
 - continuous monitoring of radon concentrations
 - mBq/m³ sensitivity
 - Multi-point (from Rn abatement system to users)
 - Cost effective
 - Easy Implementation
- Detectors for ultra-high Rn activities
 - Manipulation of strong Rn sources
 - Rapid detection of high Rn concentration
 - Hazard mitigation (health and environmental)

Partners

- LSM/LPSC (CNRS/IN2P3 France)
- CPPM (CNRS/IN2P3 France)

- LNGS (INFN Italy)
- Jagiellonian University (Poland)

- IEAP (CTU Prague / Czech Republic)
- SURO (Czech Republic)

Industrial partners : ATEKO, TESLA, Carbio12

Facilities and equipment

- Radon abatement systems
 - Old system in operation @ LSM (2005-2020)
 - LSM is contracting a new system for 2022
 - In house developments for lower temp operations
 - Smaller system in operation in SURO for testing

- Radon adsorption test benches
 - Two systems in operation @ CPPM and CTU
- System for Rn transport and emanation studies
 - One system in operation @ CPPM

Facilities and equipment

- Rn-free clean rooms
 - LNGS
 - LSM (small, 20 m³)
 - SURO (small, 13 m³)

- Rn detectors
 - JAGU/LNGS:
 - Construction of a new detector with 1 mBq/m³ sensitivity
 - High pressure operation to improve sensitivity
 - 10 mBq/m³ detectors available at LSM, CTU, SURO

Deliverables

- Hire of new personal
 - 2 FTE.Yr share LSM/CPPM
 - 2 FTE.Yr share CTU/SURO
 - 1 FTE JAGU
- Commisionning of new LSM radon abatement system
 - Intensive testing
 - Operation points (temp/pressure)
 - Adsorption material tests
- Prototypes of new Rn detector
 - Both ultra-low and ultra-high concentration
- Dissemination and publications
 - Rn adsorption materials tests
 - Rn emanation and transport studies
 - Rn detectors
 - Rn-free environments