on behalf of the KLOE-2 collaboration

$63{ }^{\text {rd }}$ LNF Scientific Committee meeting
Frascati, May $16^{\text {th }} 2022$

The reconstruction of KLOE-2 data
(Lint $=5.1 \mathrm{fb}^{-1}$) with DBV-40 has been completed
$4.7 \mathbf{f b}^{-1}$ of good quality data available for analysis!

ROOT output production continues : about $2 \mathrm{fb}^{-1}$ already available

Reconstructed Luminosity

DATA CONSOLIDATION

The data moving from old library to the new one is over so we restarted the disaster recovery copy (data preservation)

Publications/Ongoing Analysis

Last Publications

Precision tests of quantum mechanics and CPT symmetry with entangled neutral kaons at KLOE	JHEP 04 (2022) 059
$\eta \rightarrow \pi^{+} \pi^{-}$(P and CP viol.)	JHEP 10 (2020) 047
Measurement of the branching fraction for the decay $K_{S} \rightarrow \pi \mu \nu$ with the KLOE detector	Physics Letters B 804 (2020)
Ongoing analyses	
T/CPT tests with $\phi \rightarrow \mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow 3 \pi^{0} \pi e v, \pi \pi \pi e v$	KLOE data - final result blessed- draft in preparation
$\mathrm{K}_{\mathrm{S}} \rightarrow 3 \pi^{0}$ (CP viol.)	KLOE-2 data
$\mathbf{K}_{S} \rightarrow \boldsymbol{\pi} \mathbf{~ v}$	KLOE-data- final result blessed- paper ready, will be submitted soon
Study of future post-tags the past in $\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow 4 \pi$	KLOE data-new quantum correlation effect
$\gamma \gamma \rightarrow \pi^{0}$	KLOE-2 data
$\eta \rightarrow \pi^{0} \gamma \gamma-\chi$ PT golden mode	KLOE / KLOE-2 data, blessing within May
B-boson search in $\phi \rightarrow \eta \pi^{0} \gamma, \eta \rightarrow \gamma \gamma$	KLOE/KLOE-2 data, close to final result
$\boldsymbol{e}^{+} e^{-} \rightarrow \omega \gamma_{\text {ISR }}$	KLOE data - PhD Thesis
$\phi \rightarrow \boldsymbol{\eta} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-} / \boldsymbol{\eta} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$	KLOE data

$$
\zeta_{0 \overline{0}}=\left(-0.5 \pm 8.0_{\text {stat }} \pm 3.7_{\text {syst }}\right) \times 10^{-7}
$$

Most precise test of quantum coherence in an entangled system

Precision tests of quantum mechanics and $\mathcal{C P} \mathcal{T}$ symmetry with entangled neutral kaons at KLOE

The KLOE－2 collaboration

D．Babusci，${ }^{c}$ M．Berlowski，${ }^{u}$ C．Bloise，${ }^{c}$ F．Bossi，${ }^{c}$ P．Branchini，${ }^{r}$ A．Budano，${ }^{q, r}$
B．Cao，${ }^{t}$ F．Ceradini，${ }^{q, r}$ P．Ciambrone，${ }^{c}$ F．Curciarello，${ }^{i, j}$ E．Czerwiński，${ }^{b}$
G．D＇Agostini，${ }^{m, n}$ R．D＇Amico，${ }^{m, n}$ E．Danè，${ }^{c}$ V．De Leo，${ }^{m, n}$ E．De Lucia，${ }^{c}$
A．De Santis，${ }^{c}$ P．De Simone，${ }^{c}$ A．Di Cicco，${ }^{q, r}$ A．Di Domenico，${ }^{m, n, 1,2}$ E．Diociaiuti，${ }^{c}$
D．Domenici，${ }^{c}$ A．D＇Uffizi，${ }^{c}$ A．Fantini，${ }^{o, p}$ G．Fantini，${ }^{m, n}$ P．Fermani，${ }^{c}$ S．Fiore，${ }^{s, n}$
A．Gajos，${ }^{b}$ P．Gauzzi，${ }^{m, n}$ S．Giovannella，${ }^{c}$ E．Graziani，${ }^{r}$ V．L．Ivanov，${ }^{f, g}$ T．Johansson，${ }^{t}$
X．Kang，${ }^{c, v}$ D．Kisielewska－Kamińska，${ }^{b}$ E．A．Kozyrev，${ }^{f, g}$ W．Krzemien，${ }^{u}$ A．Kupsc，${ }^{t}$
P．A．Lukin，${ }^{f, g}$ G．Mandaglio，${ }^{e, a}$ M．Martini，${ }^{c, l}$ R．Messi，${ }^{o, p}$ S．Miscetti，${ }^{c}$ D．Moricciani，${ }^{c}$
P．Moskal，${ }^{b}$ A．Passeri，${ }^{r}$ V．Patera，${ }^{k, n}$ E．Perez del Rio，${ }^{m, n}$ P．Santangelo，${ }^{c}$
M．Schioppa，${ }^{i, j}$ A．Selce，${ }^{q, r}$ M．Silarski，${ }^{b}$ F．Sirghi，${ }^{c, d}$ E．P．Solodov，${ }^{f, g}$ L．Tortora，${ }^{r}$
G．Venanzoni，${ }^{h}$ W．Wiślicki ${ }^{u}$ and M．Wolke ${ }^{t}$
${ }^{a}$ INFN Sezione di Catania，Catania，Italy
${ }^{\text {b }}$ Institute of Physics，Jagiellonian University， Cracow，Poland

Concept:

J. Bernabeu, A. Di Domenico and P. Villanueva-Perez,

First such measurement with kaons
Direct test of time-reversal symmetry in the entangled neutral kaon system at a Φ factory, Nucl. Phys. B 868 (2013) 102
J. Bernabeu, A. Di Domenico and P. Villanueva-Perez,

Probing CPT in transitions with entangled neutral kaons, JHEP 1510 (2015) 139
Processes under study:

$$
\Phi \rightarrow \mathrm{K}_{\mathrm{S}} \mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{\mp} \mathrm{e}^{ \pm} v
$$

Observables of the tests (we focus on the asymptotic region $\Delta t \gg \tau_{s}$):

T-violation sensitive

$$
\begin{aligned}
R_{2}^{T}(\Delta t) & =\frac{\mathrm{I}\left(\pi^{+} e^{-} \bar{\nu}, 3 \pi^{0} ; \Delta t\right)}{\mathrm{I}\left(\pi^{+} \pi^{-}, \pi^{-} e^{+} \nu ; \Delta t\right)} \times \frac{1}{D} \\
R_{4}^{T}(\Delta t) & =\frac{\mathrm{I}\left(\pi^{-} e^{+} \nu, 3 \pi^{0} ; \Delta t\right)}{\mathrm{I}\left(\pi^{+} \pi^{-}, \pi^{+} e^{-} \bar{\nu} ; \Delta t\right)} \times \frac{1}{D}
\end{aligned}
$$

Double ratios:

$$
\frac{R_{2}^{T}}{R_{4}^{T}}(\Delta t)=\frac{I\left(3 \pi^{0}, e^{-}\right)}{I\left(3 \pi^{0}, e^{+}\right)} \frac{I\left(\pi^{+} \pi^{-}, e^{-}\right)}{I\left(\pi^{+} \pi^{-}, e^{+}\right)}
$$

$$
\frac{R_{2}^{C P T}}{R_{4}^{C P T}}(\Delta t)=\frac{I\left(3 \pi^{0}, e^{-}\right)}{I\left(3 \pi^{0}, e^{+}\right)} \frac{I\left(\pi^{+} \pi^{-}, e^{+}\right)}{I\left(\pi^{+} \pi^{-}, e^{-}\right)}
$$

- Analyzed data L=1.7 fb-1
- Four processes studied:
$\phi \rightarrow \mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi e^{ \pm} v 3 \pi^{0}$ and $\pi^{+} \pi^{-} \pi e^{ \pm} v$ in the asymptotic regime: $\Delta t \gg \tau_{S}$
- Time of flight technique to identify semileptonic decays

Data (S+B)

Measured double kaon

decay intensities

- residual background subtraction for $\pi e^{ \pm} v 3 \pi^{0}$ channel
- MC selection efficiencies corrected from data with 4 independent control samples

KLOE-2 result (2022)
(paper in preparation)

$$
\begin{array}{rll}
R_{2}^{T}= & 0.991 & \pm 0.017_{\text {stat }} \pm 0.014_{\text {syst }} \pm 0.012_{D}, \\
R_{4}^{T} & =1.015 & \pm 0.018_{\text {stat }} \pm 0.015_{\text {syst }} \pm 0.012_{D}, \\
R_{2}^{C P T} & =1.004 & \pm 0.017_{\text {stat }} \pm 0.014_{\text {syst }} \pm 0.012_{D}, \\
R_{4}^{C P T} & =1.002 & \pm 0.017_{\text {stat }} \pm 0.015_{\text {syst }} \pm 0.012_{D}, \\
R_{2}^{C P} & =0.992 & \pm 0.028_{\text {stat }} \pm 0.019_{\text {syst }}, \\
R_{4}^{C P} & =1.00665 & \pm 0.00093_{\text {stat }} \pm 0.00089_{\text {syst }}, \\
R_{2}^{T} / R_{4}^{T} & =0.979 & \pm 0.028_{\text {stat }} \pm 0.019_{\text {syst }}, \\
R_{2}^{C P T} / R_{4}^{C P T} & =1.005 & \pm 0.029_{\text {stat }} \pm 0.019_{\text {syst }} .
\end{array}
$$

$$
D=\frac{\mathrm{BR}\left(\mathrm{~K}_{\mathrm{L}} \rightarrow 3 \pi^{0}\right) \tau_{\mathrm{S}}}{\mathrm{BR}\left(\mathrm{~K}_{\mathrm{S}} \rightarrow \pi \pi\right) \tau_{\mathrm{L}}}=0.5076(59) \times 10^{-3} \rightarrow \underset{\text { measurements }}{\text { from past KLOE }}
$$

First T and CPT test in kaon transitions
$3 \pi^{0}$ is a pure $\mathrm{CP}=-1$ state; observation of $\mathrm{K}_{\mathrm{S}} \rightarrow 3 \pi^{0}$ is an unambiguous sign of CP violation in mixing and/or in decay.
Standard Model prediction: $\mathrm{BR}\left(\mathrm{K}_{\mathrm{S}} \rightarrow 3 \pi^{0}\right)=1.9 \cdot 10^{-9}$
PLB 723 (2013) 54
Best upper limit by KLOE with $1.7 \mathrm{fb}^{-1}$

$$
\mathrm{BR}\left(\mathrm{~K}_{\mathrm{S}} \rightarrow 3 \pi^{0}\right)<2.6 \times 10^{-8} @ 90 \% \mathrm{CL}
$$

SIGNAL

$$
\begin{array}{ll}
\mathrm{K}_{\mathrm{S}} \rightarrow 3 \pi^{0} \rightarrow 6 \gamma & \mathrm{~K}_{\mathrm{S}} \rightarrow 2 \pi^{0}+\text { accidental/splitted clusters } \\
& \mathrm{K}_{\mathrm{I} .} \rightarrow 3 \pi^{0}, \mathrm{~K}_{\mathrm{S}} \rightarrow \pi^{+} \pi^{-}\left(\text {, „fake } \mathrm{K}_{\mathrm{l}} \text {-crash" }\right)
\end{array}
$$

Analysed data: $4 \mathrm{fb}^{-1}$, Datarec v38
MC simulations:
$\mathrm{K}_{\mathrm{S}} \rightarrow 3 \pi^{0}$ signal: $1.7 \mathrm{fb}^{-1}$, Datarec v38, LSF $=10^{6}$)
All backgrounds: $\sim 4 \mathrm{fb}^{-1}$, Datarec v38, LSF=1)
Preselection with the following requirements:

- K_{L}-crash: $\mathrm{E}>150 \mathrm{MeV}, 0.2<\beta<0.225$
- prompt photons: $\mathrm{E}_{\mathrm{cl}}>20 \mathrm{MeV} ;\left|\cos \theta_{\mathrm{cl}}\right| \leq 0.915$ and $\left|\Delta \mathrm{T}_{\mathrm{cl}}\right| \leq \operatorname{Min}\left(3.0 \cdot \sigma_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{cl}}\right), 2 \mathrm{~ns}\right)$
$\mathrm{K}_{\mathrm{S}} \rightarrow 2 \pi^{0}$ (4 prompt photons) used for normalization
For each sample we apply cosmic veto and check ECLtag \& FILFO words

Category	Weight
2 A	1.242 ± 0.032
1 A 1 S	1.79 ± 0.22
Fakes	1.52 ± 0.15
$2 S$	1.617 ± 0.033
OTHERS	1.617 ± 0.033

6γ sample: MC fractions fit to data

The optimized analysis chain efficiencies:

Status of the analysis:

- At the end of the analysis we count $\mathbf{0}$ candidates in the background simulations.
- Kinematic fit optimization completed, reprocessing the whole statistics
- Final corrections for the backgrounds simulations in progress
- Expected sensitivity on BR at full KLOE statistics and optimized analysis $\sim 10^{-8}$
$\left|\mathrm{V}_{\mathrm{us}}\right|$ CKM matrix element is best measured from Kaon meson semileptonic decays

$$
\Gamma_{K \ell 3}=\frac{G_{F}^{2} M_{K}^{5}}{192 \pi^{3}} S_{E W}\left(1+\delta_{K}^{\ell}+\delta_{S U 2}\right) C^{2}\left|V_{u s}\right| f_{+}^{2}(0) I_{K}^{\ell}
$$

$\mathrm{BR}\left(\mathrm{K}_{\mathrm{s}} \rightarrow \pi \mathrm{ev}\right)$ less precise than K_{L} and $\mathrm{K}^{+} / \mathrm{K}^{-}$
$\mathrm{BR}\left(\mathrm{K}_{\mathrm{s}} \rightarrow \pi \mathrm{ev}\right)=(7.046 \pm 0.078$ stat $\pm 0.049 \mathrm{syst}) \times 10^{-4}$ [PLB 636 (2006) 173] Measured by KLOE with $0.4 \mathrm{fb}^{-1}$ 1.4% uncertainties level, 1.1% stat $\pm 0.7 \%$ syst

Improve $\mathrm{BR}\left(\mathrm{K}_{\mathrm{s}} \rightarrow \pi \mathrm{ev}\right)$ measurement to have a |Vus| evaluation from $\mathrm{K}_{\mathrm{s}} \rightarrow \pi \mathrm{ev}$ decay comparable with others contribution

			\% err	Approx. contrib. to \% err from:			
				BR	τ	Δ	Int
	$K_{L} e 3$	0.2162(5)	0.23	0.09	0.20	0.02	0.05
	$K_{L} \mu 3$	0.2167(6)	0.29	0.15	0.18	0.11	0.07
.	$K_{5} e 3$	0.2154(13)	0.60	0.60	0.02	0.02	0.05
	$K_{\text {S }} \mu 3$	0.2126(47)	2.2	2.2	0.02	0.11	0.07
	$K^{ \pm} e 3$	0.2167(7)	0.32	0.27	0.06	0.17	0.05
	$K^{ \pm} \mu 3$	0.2167(11)	0.50	0.45	0.06	0.21	0.07

K_{S} tagged by K_{L} interaction in EMC Possibility to have pure Ks beam Efficiency ~30\% (largely geometrical) K_{S} angular resolution: $\sim 1^{\circ} \quad\left(0.3^{\circ}\right.$ in $\left.\phi\right)$ K_{S} momentum resolution: $\sim 2 \mathrm{MeV}$

- Analyzed L=1.63 fb-1
- 1 vtx close to $\mathrm{IP}+\mathrm{K}_{\mathrm{L}}$ interaction in the calorimeter (KL crash)
- $\mathrm{K}_{\mathrm{S}} \rightarrow \pi+\pi^{-}$as normalization sample
- $\quad \mathrm{K}_{\mathrm{S}}$ semileptonic signal selection:
- boosted decision tree (BDT) with kinematic variables to reject main background from $\mathrm{K}_{\mathrm{S}} \rightarrow \pi^{+} \pi^{-}$and $\phi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$
- PID with Time of Flight

$$
2.5 \mathrm{~ns}<\left|\delta t_{\pi \pi}\right|<10 \mathrm{~ns}
$$

- Signal count from fit to $\mathrm{M}^{2}(\mathrm{e})$ distribution
- $49647 \pm 316 \mathrm{~K}_{\mathrm{Se} 3}$ events
- Selection efficiency from $\mathrm{K}_{\mathrm{S}} \rightarrow \pi^{+} \pi^{-} \mathrm{K}_{\mathrm{L}} \rightarrow \pi e v$ close to IP data control sample
- $\varepsilon=(19.38 \pm 0.04) \%$
- Study of systematic uncertainties from:

BDT and TOF selection cuts, fit range, trigger, on-line filter, event classification, T0 determination, K_{L}-crash and β^{*} selection, K_{S} identification

Selection	$\delta \epsilon_{\pi=\nu}^{\text {syst }}[\%]$	$\delta \epsilon_{\pi^{+} \pi^{-}}^{\text {syst }}[\%]$
TCA efficiency	0.009	
BDT selection	0.276	
TOF selection	0.308	
MC control sample statistics	0.108	
MC signal statistics	0.143	
Fit	0.153	
$\pi^{+} \pi^{-}$efficiency \& MC statistics		0.091
Total	0.477	0.091

Relative systematic uncertainties of efficiencies

$$
\begin{aligned}
& \mathrm{BR}\left(K_{S} \rightarrow \pi e v\right) \\
& =\left(7.211 \pm 0.046_{\text {stat }} \pm 0.052_{\text {syst }}\right) \times 10^{-4}
\end{aligned}
$$

- Combination of the previous result from KLOE based on an independent data sample $\left(\mathrm{L}=0.41 \mathrm{fb}^{-1}\right) \mathrm{BR}\left(\mathrm{K}_{\mathrm{Se} 3}\right)=(7.046 \pm 0.078 \pm 0.049) \times 10^{-4}[$ KLOE PLB636 (2006)] gives:

$$
\mathrm{BR}\left(K_{S} \rightarrow \pi e v\right)=\left(7.153 \pm 0.037_{\text {stat }} \pm 0.043_{\text {syst }}\right) \times 10^{-4}
$$

- From

$$
\mathcal{B}\left(K_{S} \rightarrow \pi \ell \nu\right)=\frac{G^{2}\left(f_{+}(0)\left|V_{u s}\right|\right)^{2}}{192 \pi^{3}} \tau_{S} m_{K}^{5} I_{K}^{\ell} S_{\mathrm{EW}}\left(1+\delta_{\mathrm{EM}}^{K \ell}\right)
$$

Using the values $\mathrm{S}_{\mathrm{EW}}=1.0232 \pm 0.0003$ [Marciano, Sirlin PRL 71 (1993) 3629]
and $I_{K}^{e}=0.15470 \pm 0.00015$ and $\delta_{E M}^{K e}=(1.16 \pm 0.03) \times 10^{-2}$ [Seng, Galviz, Marciano, Meissner, PRD 105, (2022) 013005] we derive:

KLOE-2 result (2022)
Paper draft ready

$$
f_{+}(0)\left|V_{u s}\right|=0.2170 \pm 0.0009
$$

 Info on TFF slope

First bending dipoles of DAФNE act as spectrometers for scattered leptons ($420<\mathrm{E}<495 \mathrm{MeV}$)

Scintillator hodoscope + PMTs, inserted in Roman pots pitch: $5 \mathrm{~mm}, \sim 11 \mathrm{~m}$ from IP ($\left.\sigma_{\mathrm{E}} \sim 2.5 \mathrm{MeV} \sigma_{\mathrm{t}} \sim 500 \mathrm{ps}\right)$

HET is acquired asynchronously w.r.t. the KLOE-2 DAQ
(Xilinx Virtex 5 - FPGA), synchronization with the «Fiducial» signal from DAФNE (each 325 ns) and the KLOE trigger

HET acquisition window corresponds to about 2.5 DA Φ NE revolutions, data are recorded only when a KLOE trigger is asserted

Cross section measurement concept:
'Normalization channel: very small angle radiative Bhabha's '(Simulation: Bbbrem generator+BDSIM transport)

$$
\frac{\sigma_{\pi^{0}}}{\sigma_{\mathrm{Bha}}}=\frac{N_{\pi^{0}}^{\mathrm{meas}}}{\epsilon_{\mathrm{ana}} N_{\mathrm{Bha}}^{\mathrm{meas}}} \frac{A_{\mathrm{Bha}}}{A_{\pi^{0}}}
$$

$$
N_{\mathrm{Bha}}^{\text {meas }}=\sigma_{\mathrm{Bha}}^{\text {meas }} \int \mathrm{Ldt}
$$

$$
\sigma_{\text {Bha }}^{\text {meas }} \text { measured at few } \% \text { level }
$$

\int Ldt from KLOE online/ $\gamma \gamma$ control sample
$N_{\pi 0}$ estimation :
-Statistics : $3 \mathrm{fb}^{-1}$
-Single arm selection :
-Two-cluster bunches in the KLOE barrel

EMC

-Selected bunch crossing and HET signal in a time window of 40 ns around the KLOE Trigger
-Very loose kinematic cuts

Accidental-pure data (A sample)

Analysis based on $\mathrm{A}+/ \mathrm{A}$ comparison with ML fits
A sample used for background modelling (shape and number)

Signal pdfs by Ekhara simulation, control samples and BDSIM transport

Fits performed both per period or per single HET channel to check result consistency
π^{0} counting equalized taking into account differences in plastic response and analysis efficiency along data taking

Unweighted counting results: 5292(430) Ele, 3526(377) Pos
Combined unweighted results (Ele+Pos): 8818 (572), about 6.5% precision

Status of the measurement:

\mathbf{N}_{π} : weighted counting performed, final checks on weights ongoing
$\epsilon_{\text {ana }}$: analysis efficiency evaluation completed
$\int \mathrm{Ldt}$: luminosity measurement performed both with KLOE online and cross checked with $\gamma \gamma$ control sample $\frac{A_{\text {Bha }}}{A_{\pi^{0}}}:$ Take on MC Bbbrem/Ekhara at production level to estimate acceptance uncertainty, in progress

$\eta \rightarrow \pi^{0} \gamma \gamma$ decay

$\eta \rightarrow \pi^{0} \gamma \gamma($ from $\phi \rightarrow \eta \gamma): \quad \chi$ PT golden mode, $O\left(\mathrm{p}^{2}\right)$ null, $O\left(\mathrm{p}^{4}\right)$ suppressed \Rightarrow sensitive to $O\left(\mathrm{p}^{6}\right)$

$\mathrm{BR}=(22.1 \pm 2.4 \pm 4.7) \times 10^{-5} \mathbf{C B} @ A G S$ (2008)

BR $=(25.2 \pm 2.5) \times 10^{-5}$ CB@MAMI (2014)
A2 MAMI [PRC 90 (2014) 025206]
Sample of $\sim 6.107 \eta$'s,$\sim 1200 ~ \eta \rightarrow \pi^{0} \gamma \gamma$ events found
Old KLOE preliminary: $(8.4 \pm 2.7 \pm 1.4) \times 10^{-5}$

$$
\text { (} \mathrm{L}=450 \mathrm{pb}^{-1} \sim 70 \text { signal events) }
$$

Latest theoretical studies by Escribano et al.
PRD 102 (2020) 034026 : calculated $\mathrm{BR}=1.30(1) \times 10^{-4}$ Many previous predictions differ by a factor ~ 2

A new analysis of KLOE data, using $\sim 4 \mathrm{x}$ larger data sample ($1.7 \mathrm{fb}^{-1}, 7 \times 10^{7} \eta$'s)

- Main background from $\phi \rightarrow\left(\eta \rightarrow 3 \pi^{0}\right) \gamma$ with lost or merged photons
- Variables corrected by a kinematic fit to improve resolution
Normalization to $\phi \rightarrow\left(\eta \rightarrow 3 \pi^{0}\right) \gamma \rightarrow 7 \gamma$
Very pure channel

From the full spectrum using 3 component fit with $\eta \rightarrow 3 \pi^{0}$ (7γ normalization):

$$
\mathrm{BR}=(1.21 \pm 0.13 \text { stat }) \times 10^{-4}
$$

Escribano PRD 102 (2020) prediction $B R=1.30(1) \times 10^{-4}$

Separate fits to $M($ eta $)$ in $M^{2}(\gamma \gamma)$ slices
Missing bins due to $\pi^{0} \pi^{0}$ veto

Status of the measurement:

Evaluation of analysis systematics completed, small refinement needed

Systematic determination of $\mathrm{d} \Gamma / \mathrm{dM}^{2}(\gamma \gamma)$ in progress

Analysis report and paper draft underway

KLOE-2 data reconstruction with final DBV has been completed. Data available for analyses.

MC production with final DBV almost completed, final checks ongoing
ROOT output production continues, about $2 \mathrm{fb}^{-1}$ already available
New KLOE paper on precision tests on QM and CPTV with entangled Kaons: JHEP 04 (2022) 059

One other paper draft ready: $\mathrm{K}_{\mathrm{s}} \mathrm{e} 3$ (under final KLOE-2 revision)
T/CPT tests with $\phi \rightarrow \mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow 3 \pi^{0} \pi e v, \pi \pi \pi e v$: final result blessed, writing paper draft
$\eta \rightarrow \pi^{0} \gamma \gamma$: close to final result, blessing within this month
The other analyses are in a very advanced state
A new quantum time correlation effect is being studied with $\phi \rightarrow \mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow 4 \pi$

Recommendations to KLOE-2: none

Observations to KLOE-2:

1- The KLOE collaboration has continued the data and MC reprocessing with version DBV-40. For data $4.5 / \mathrm{fb}$ are done and the remaining $1 / \mathrm{fb}$ is in progress and expected to be done by January. For MC, the production for DBV- 38 is finished and for DBV-40 0.5/fb of inclusive phi production is done.

2- KLOE has made significant progress in the data analyses that were planned since the last meeting. The analysis probing CPT violation in KSKL->4p was finalized and has been submitted to JHEP. Several other analyses were presented in preliminary form at the EPS conference in July and are now being finalised for publication. In particular, a clear signal is observed in the gg->p0 production mode with the HET tagger used for tagging the outgoing e+e-. Here, the remaining work ongoing is the estimate of the ratio of acceptances for the signal events and the normalisation channel (Bhabha events).

3- It is expected that the six analyses which are well advanced will conclude by summer of 2022. However, none of these analyses uses the full dataset of $5.5 / \mathrm{fb}$, they are based on up to $2 / \mathrm{fb}$ only and with an older software version. Many of the results are still statistically limited and an analysis of the full dataset with DBV-40 would be highly desirable as they present a unique opportunity and are world- leading. In the spring of 2022, the collaboration plans to start discussing on how to "open" these data and on the future of the collaboration.

SPARE SLIDES

KLOE-2 coll. EPJC (2010) 68, 619
http:// agenda.infn.it/event/kloe2ws procs. EPJ WoC 166 (2018)

KAON Physics:

- CPT and QM tests with kaon interferometry
- Direct T and CPT tests using entanglement
- CP violation and CPT test:
$K_{S^{\prime}}>3 \pi^{0}$
direct measurement of $\operatorname{Im}\left(\varepsilon^{\prime} / \varepsilon\right)$ (lattice calc. improved)
- CKM Vus:
K_{S} semileptonic decays and A_{S} (also CP and CPT test)
$\mathrm{K} \mu 3$ form factors, $\mathrm{K} l 3$ radiative corrections
- $\quad \chi \mathrm{pT}: \mathrm{K}_{\mathrm{S}} \rightarrow \gamma \gamma$
- Search for rare K_{S} decays

Hadronic cross section

- ISR studies with $3 \pi, 4 \pi$ final states
- F_{p} with increased statistics
- Measurement of $\mathrm{a}_{\mu}{ }^{\text {HLO }}$ in the space-like region using Bhabha process

Dark forces:

- Improve limits on:
$\mathrm{U} \gamma$ associate production $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{U} \gamma, \mathrm{U} \rightarrow \mu \mu, \pi \pi$, ee
- Higgstrahlung $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ Uh' $\rightarrow \mu^{+} \mu^{-}+$miss. energy
- Leptophobic B boson search $\phi \rightarrow \eta \mathrm{B}, \mathrm{B} \rightarrow \pi^{0} \gamma, \eta \rightarrow \gamma \gamma$
$\eta \rightarrow \mathrm{B} \gamma, \mathrm{B} \rightarrow \pi^{0} \gamma$
- Search for U invisible decays

Light meson Physics:

- η decays, ω decays
- Transition Form Factors
- C,P,CP violation: improve limits on $\eta \rightarrow \gamma \gamma \gamma, \pi^{+} \pi^{-}, \pi^{0} \pi^{0}, \pi^{0} \pi^{0} \gamma$
- improve $\eta \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-}$
- $\chi \mathrm{pT}: \eta \rightarrow \pi^{0} \gamma \gamma$
- Light scalar mesons: $\mathrm{f}_{0}(500)$ in $\Phi \rightarrow \mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{S}} \gamma$
- $\gamma \gamma$ Physics: $\gamma \gamma \rightarrow \pi^{0}$ and π^{0} TFF
- Search for axion-like particles
$K_{s} K_{L} \rightarrow \operatorname{mev} 3 \pi^{0}$
- Preselection:
- Vtx with 2 tracks close to IP (cutting close to IP to reject $\mathrm{K}_{s} \rightarrow \pi \pi \rightarrow \pi \mu$)
- 6 neutral clusters' set
- Reconstructing $\mathrm{K}_{\mathrm{L}} \rightarrow 3 \pi^{0}$
- Reconstruction of kaon decay times and Δt
- Analysis:
- basic $\mathrm{K}_{s} \rightarrow$ tev selection cuts
- TCA requirement for 2 tracks
- Time of flight analysis and cuts
- Cut on $R /\left(T^{*} c\right)$ for neutral clusters to reject $K_{s} \rightarrow \pi^{0} \pi^{0}$
- Kinematic fit
- ANN-based classification of e / π and e / μ

EMC clusters and tracks
$S / B \approx 23$

- Residual background subtraction
using a MC-based model

- Preselection:
- vtx with 2 tracks close to IP
- $M(\pi \pi)$ and $|p|$ cuts for 2 tracks
- Exactly 1 other vtx with 2 tracks passing a missing mass cut
- Reconstruction of kaon decay times and Δt
- Analysis:
- TCA requirement for 2 tracks from K_{L} decay vertex
- Time of flight analysis and cuts

Effect	R_{2}^{T}	R_{4}^{T}	$R_{2}^{C P T}$	$R_{4}^{C P T}$	R_{2}^{T} / R_{4}^{T}	$R_{2}^{C P T} / R_{4}^{C P T}$	$R_{2}^{C P}$	$R_{4}^{C P}$
Residual background model	0.002738	0.004615	0.002789	0.004429	0.004432	0.004414	0.004369	-
Smoothing of efficiencies from MC	0.002460	0.005310	0.002430	0.005260	0.006700	0.006830	0.006760	0.000165
Δt bin width	0.008000	0.005000	0.007500	0.005500	0.009000	0.009000	0.008900	0.000030
Fit range position	0.007250	0.007280	0.007270	0.007260	0.005140	0.005270	0.005200	0.000205
Fit range width	0.001110	0.005080	0.000858	0.005050	0.006070	0.005480	0.005780	0.000359

| Effects of cuts in the $\pi e \nu 3 \pi^{0}$ selection | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| K_{S} vertex ρ | 0.000411 | 0.002300 | 0.000417 | 0.002260 | 0.002240 | 0.002290 | 0.002270 | |
| $\mathrm{~K}_{\mathrm{S}}$ vertex z | 0.000397 | 0.000242 | 0.000405 | 0.000239 | 0.000736 | 0.000760 | 0.000748 | |
| $\mathrm{M}(\pi, \pi)$ | 0.002480 | 0.001340 | 0.002520 | 0.001310 | 0.001560 | 0.001630 | 0.001600 | - |
| $1^{\text {st }}$ TOF cut | 0.001600 | 0.002220 | 0.001620 | 0.002190 | 0.003830 | 0.003950 | 0.003890 | - |
| $2^{\text {nd }}$ TOF cut parameter A | 0.000671 | 0.000581 | 0.000684 | 0.000569 | 0.000878 | 0.000899 | 0.000889 | - |
| $2^{\text {nd }}$ TOF cut parameter B | 0.000369 | 0.000433 | 0.000375 | 0.000426 | 0.000076 | 0.000077 | 0.000076 | |
| $2^{\text {nd }}$ TOF cut parameter C | 0.000152 | 0.000399 | 0.000154 | 0.000393 | 0.000278 | 0.000283 | 0.000281 | |
| $2^{\text {nd }}$ TOF cut parameter D | 0.001420 | 0.000850 | 0.001450 | 0.000836 | 0.002050 | 0.002110 | 0.002080 | |
| $3^{\text {rd }}$ TOF cut circle R | 0.005140 | 0.004470 | 0.005230 | 0.004390 | 0.003560 | 0.003640 | 0.003600 | - |
| $3^{\text {rd }}$ TOF cut ellipse A | 0.002280 | 0.001020 | 0.002320 | 0.001000 | 0.002760 | 0.002850 | 0.002800 | - |
| $3^{\text {rd }}$ TOF cut ellipse B | 0.000412 | 0.000993 | 0.000420 | 0.000973 | 0.000956 | 0.000975 | 0.000965 | |
| e/ π / μ classification | 0.004000 | 0.004330 | 0.004070 | 0.004250 | 0.009100 | 0.009340 | 0.009220 | - |
| Classifier training with data $/ \mathrm{MC}$ | 0.002620 | 0.000800 | 0.002630 | 0.000810 | 0.002050 | 0.002170 | 0.002110 | - |

Effects of cuts in the $\pi^{+} \pi^{-} \pi e \nu$ selection

K_{S} vertex ρ	0.000002	0.000002	0.000002	0.000002	0.000000	0.000000	-	0.000000
$\mathrm{~K}_{\mathrm{S}}$ vertex z	0.000007	0.000003	0.000003	0.000007	0.000004	0.000004	-	0.000005
$\mathrm{M}(\pi, \pi)$	0.002220	0.002280	0.002240	0.002260	0.000024	0.000024	-	0.000027
$\left\|\vec{p}_{\text {tot }}\right\|$	0.000152	0.000181	0.000178	0.000154	0.000021	0.000021	-	0.000022
$m_{+}^{2}+m_{-}^{2}$	0.001480	0.001320	0.001310	0.001490	0.000202	0.000208	-	0.000210
$1^{\text {st }}$ TOF cut parameter A	0.000021	0.000385	0.000389	0.000020	0.000392	0.000405	-	0.000426
$1^{\text {st }}$ TOF cut parameter B	0.001450	0.001080	0.001070	0.001470	0.000407	0.000417	-	0.000417
$2^{\text {nd }}$ TOF cut parameter R_{1}	0.000171	0.000256	0.000262	0.000175	0.000126	0.000130	-	0.000140
$2^{\text {nd }}$ TOF cut parameter R_{2}	0.001570	0.001200	0.001190	0.001590	0.000399	0.000410	-	0.000414
Total systematic uncertainty	0.014	0.015	0.014	0.015	0.019	0.019	0.019	0.00089
Uncertainty on the D factor	0.012	0.012	0.012	0.012				
Including the D factor	0.018	0.019	0.019	0.019				

Table 7.1.: Systematic uncertainties
6γ sample: MC fractions fit to data

- Coming from Escribano et al. [PRD 102 (2020) 034026]
- Claims that previous calculations were overestimated by a factor of two due to not taking into account the same non $-\pi^{\circ}$ two photons in the final state when relating decay amplitude with it's width
- Why we should believe them? They can predict $\eta^{\prime} \rightarrow \pi^{0} \gamma \gamma$ using the same method that matches BESIII data [PRD 96 (2017) 012005].

