Josephson Junctions Measures

Substrates #07, #11 february 2022

Istituto Nazionale di Fisica Nucleare

Luca Origo and Danilo Labranca

<u>substrates</u>

Substrate #07:

- run 1 (no markers)
- oxidation pressure: $1.36 \cdot 10^{-3} \text{ mTorr}$ oxidation time: 742 s $p^{1/2} \cdot t [\text{mTorr} \cdot \text{s}] = 27.37$
- oxidation process: ?

Substrate #11:

- run 4 (with markers)
- oxidation pressure: 9.41 · 10⁻⁴ mTorr
 p^{1/2} · t [mTorr · s] = 82.12
- oxidation time: 2 677 s
- oxidation process: ?

Substrates #02 and #05 had the same oxidation parameter and we expected to observe $R_{\mu_{02}} = R_{\mu_{05}}$. \rightarrow Do we expect to observe $R_{\#07} < R_{\#11}$?

rate ~ 1/3

<u>substrates</u>

One substrate consists in **12 devices** (A,-,L) with **14 arrays of Josephson junctions** (20 overall) each. → 168 measures of resistance for each substrate

junctions #	5	4	1	short	2	3	5
array ID	L1/R1	L2/R2	L3/R3	L4/R4	L5/R5	L6/R6	L7/R7

The short resistance (L4/R4) is required to compute the parasitic impedance introduced by the conductive trails.

series R _{par} 110/250 138/250 222/250	1	194/250	166/250	110/250
---	---	---------	---------	---------

Of course, these factors depend on the junctions #. We used them to correct the resistance measures.

the measurement

4 terminal sensing measurement \Rightarrow current sweep up to 10 µA, with a 0.1 µA step.

The data taking has been improved. Now the procedure is less time consuming than it was before (~2h / substrate).

The correction works!

But some devices (A,D,E) show sparse low resistances. In addition, the device A is partially faulty and some of its arrays (R1, R2, R3) show open circuit properties.

The correction works!

But some devices (A,D,E) show sparse low resistances. In addition, the device A is partially faulty and some of its arrays (R1, R2, R3) show open circuit properties.

correction

substrate gradients

Both the gradients are descending. The wide dispersions are due to the faulty arrays.

average resistance

	Substrate #07			
	R	ΔR		
	25.88 Ω	3.06Ω (11.84%)		
type L	25.88 Ω	3.16 Ω (12.20%)		
type R	25.89 Ω	2.95 Ω (11.39%)		

The correction works!

But the arrays with 3 junctions seem to have a very wide distribution...

The correction works!

But the arrays with 3 junctions seem to have a very wide distribution...

the L6 problem

In details, we observe that the L6 triple junction arrays show a way higher resistance value.

We can point out this anomaly also studying the gradient on the y direction of the substrate.

(This is the corrected plot that highlights the difference shifting the offsets of the lines)

substrate gradients

Both the gradients are slightly descending.

average resistance

	Substrate #11		
	R	ΔR	
	11.46 Ω	0.9Ω (7.83%)	
type L	11.54 Ω	0.95 Ω (8.23%)	
type R	11.40 Ω	0.81 Ω (7.08%)	

The small amount of counts in the right tail of the distribution are caused by the left component (more precisely by L6).

The substrate #07:

- shows an average resistance of ~26 Ω while the substrate #11 is ~11 Ω .
- has a more broadened resistance distribution.
- has a steeper descending gradient on both x and y directions.

- The L and R resistances are equally distributed around the same substrate-average-value.
- The new wafers show a steeper gradient on y direction and a gradient on the x direction which is now shared by both L and R type of junctions.

- The L and R resistances are equally distributed around the same substrate-average-value.
- The new wafers show a steeper gradient on y direction and a gradient on the x direction which is now shared by both L and R type of junctions.

- The L and R resistances are equally distributed around the same substrate-average-value.
- The new wafers show a steeper gradient on y direction and a gradient on the x direction which is now shared by both L and R type of junctions.

- The L and R resistances are equally distributed around the same substrate-average-value.
- The new wafers show a steeper gradient on y direction and a gradient on the x direction which is now shared by both L and R type of junctions.

