

GRASS 2022

Light scattered by high performance optical components: Numerical prediction and accurate metrology

<u>Myriam ZERRAD</u>, Michel LEQUIME, Marin FOUCHIER, Imran Khan, Xavier BUET, Adrien BOLLIAND, Paul ROUQUETTE, Edith HARTMANN and Claude AMRA

myriam.zerrad@fresnel.fr

Light Scattering Group (CONCEPT)

- Light scattered by an optical surface
 - Any optical surface is characterized by a certain roughness, possibly very low
 - Any rough interface generates a scattered field

- Light scattered by an optical surface
 - Any optical surface is characterized by a certain roughness, possibly very low
 - Any rough interface generates a scattered field
 - A rough surface is equivalent to a plane surface supporting fictitious currents

- Light scattered by an thin film stack
 - Any optical surface is characterized by a certain roughness, possibly very low

- Light scattered by an thin film stack
 - Any optical surface is characterized by a certain roughness, possibly very low
 - Thin-film energetic deposition processes replicate substrate roughness

- Light scattered by an thin film stack
 - Any optical surface is characterized by a certain roughness, possibly very low
 - Thin-film energetic deposition processes replicate substrate roughness
 - Each rough interface generates its own scattered field

$$\vec{E}_d = \sum_j \vec{E}_{d,j}$$

transmitted \vec{E}_t

6

Light scattered by an thin film stack

$$\begin{aligned} \text{ARS} &= \frac{1}{P_i} \frac{dP_s}{d\Omega_s} \\ \text{ARS}^{\pm} &= \frac{1}{S} \sum_{j=0}^p \left| D_j^{\pm} \hat{h}_{e,j} \right|^2 + \frac{1}{S} \left\{ \sum_{j=0}^p \sum_{k \neq j} D_j^{\pm} \left[D_k^{\pm} \right]^* \hat{h}_{e,j} \hat{h}_{e,k}^* \right\} \\ \hat{h}_{e,j} &= \text{FT}[h_j s_e] \; ; \; s_e(x,y) = e^{ik_0 x \sin \theta_0^i} e^{-\frac{(x \cos \theta_0^i)^2 + y^2}{w_0^2}} \end{aligned}$$

 $\hat{h}_{e,j}$

Topography

C. Amra, M. Lequime, and M. Zerrad, *Electromagnetic Optics of Thin-Film Coatings: Light Scattering, Giant Field Enhancement, and Planar Microcavities* (Cambridge University Press, 2021).

FRESNEL MARSELL

Numerical implementation

- Inputs
 - Opto-mechanical characteristics of the stack (thicknesses d_j ; refractive indices n_j)
 - ✓ Illumination conditions (angle of incidence θ_0^i ; wavelength λ ; state of polarization)
 - ✓ Interfaces roughness (substrate roughness spectrum γ_s ; correlation coefficients $\alpha_{e,jk}$)

Output

C. Amra, M. Lequime, and M. Zerrad, Electromagnetic Optics of Thin-Film Coatings: Light Scattering, Giant Field Enhancement, and Planar Microcavities (Cambridge University Press, 2021).

Numerical application on complex optical coatings

Spectral and Angular Light Scattering characterization Apparatus - SALSA

- Performances 6 decades higher than State of the art spectrophotometers - Performances of the best laser (monochromatic) scatterometers

On the whole Visible and NIR spectra

SALSA : Accuracy & detectivity

Angular Scattering : Metrology vs direct calculation

"Light scattering from multilayer optics. I. Tools of investigation," C. Amra , J. Opt. Soc. Am. A **11**, 197- (1994). "Light scattering from multilayer optics. II. Application to experiment,«, C. Amra , J. Opt. Soc. Am. A **11**, 211- (1994). "First-order vector theory of bulk scattering in optical multilayers" C. Amra , J. Opt. Soc. Am. A **10**, 365- (1993)

Spectral & Angular Scattering : Metrology vs direct calculation

Spectral & Angular Scattering : Metrology vs direct calculation

M. Fouchier, M. Zerrad, M. Lequime, C. Amra, "Wide-range wavelength and angle resolved light scattering measurement apparatus," Opt. Letters 45, 2506-2509 (2020)

Back-reflection & Back-scattering

Retro-reflection and back-scattering

Both can be problematic for GW detection due to the reinjection of light in the interferometers

OLCBS (Optical Low Coherence Back Scattering)

Balanced low coherence interferometry

- Central wavelength: 1060 nm
- ✓ Spectral range: 1040 1080 nm

Detection limits

- ✓ Back-reflection 10⁻¹⁰
- ✓ Back-scattering 10⁻⁶ sr⁻¹
- Ability to separate the contributions of each face of the component
- Ability to measure the spectral dependence of the complex amplitude of the field backreflected or back-scattered by the front face of a sample

I. Khan, M. Lequime, M. Zerrad, and C. Amra, Phys. Rev. Applied **16**, 044055 (2021) M. Lequime, I. Khan, M. Zerrad, and C. Amra, Optica (to be published, 2022)

17

OLCBS (Optical Low Coherence Back Scattering)

Low coherence interferometry & scattering metrology

Talk I. Khan for detailed description

I. Khan, M. Lequime, M. Zerrad, and C. Amra, "Detection of Ultra-Low Light Power Back-reflected or Back-scattered by Optical Components using Balanced Low Coherence Interferometry," Phys. Rev. Applied 16, 044055 (2021)

Back-reflection and back-scattering metrology OLCBS (Optical Low Coherence Back Scattering)

I. Khan, M. Lequime, M. Zerrad, and C. Amra, "Detection of Ultra-Low Light Power Back-reflected or Back-scattered by Optical Components using Balanced Low Coherence Interferometry," Phys. Rev. Applied **16**, 044055 (2021)

Back-reflection and back-scattering metrology OLCBS (Optical Low Coherence Back Scattering)

I. Khan, M. Lequime, M. Zerrad, and C. Amra, "Detection of Ultra-Low Light Power Back-reflected or Back-scattered by Optical Components using Balanced Low Coherence Interferometry," Phys. Rev. Applied **16**, 044055 (2021)

What about contamination & defects ?

Defects and contamination....

The presence of defects can induce additional scattering losses

Challenge : quantify the weight of defects and contamination

Defects and contamination....

The presence of defects can induce additional scattering losses

Challenge : quantify the weight of defects and contamination

Spatially resolved BRDF measurement

Defects and contamination....: Spatially resolved BRDF measurement

"A goniometric light scattering instrument with high-resolution imaging", M. Lequime, M. Zerrad, C. Deumié, C. Amra, Opt. Com. 282 (2009) 1265–1273

Defects and contamination....: Spatially resolved BRDF measurement

"A goniometric light scattering instrument with high-resolution imaging", M. Lequime, M. Zerrad, C. Deumié, C. Amra, Opt. Com. 282 (2009) 1265-1273

New generation : SPARSE

SPatially and Angularly Resolved Scatterometry Equipment

DIFFUSIF platform

www.fresnel.fr/diffusif myriam.zerrad@fresnel.fr

SALSA

Spectral & Angular

OLCBS

Back-reflection & Backscattering

SPARSE

Defects & Contamination

To go further : Scattered light trapped in the coating

Conclusion & perspectives

- Modeling of light scattered by :
 - ✓ Surfaces
 - ✓ Optical coatings
 - ✓ Optical components
 - ✓ Trapped light
 - ✓ Perturbative bulks
 - Thermal radiation emitted by coatings under illumination

Metrology

- ✓ Spectral
- ✓ Angular
- ✓ Backscattering & retro-reflection
- ✓ Defects & contamination vs roughness
- \checkmark Polarization

In progress

- Metrology of :
 - Thermal radiation pattern
 - Phase of scattered & backscattered light

Thank you for your attention !!!

GRASS 2022

Light scattered by high performance optical components: Numerical prediction and accurate metrology

<u>Myriam ZERRAD</u>, Michel LEQUIME, Marin FOUCHIER, Imran Khan, Xavier BUET, Adrien BOLLIAND, Paul ROUQUETTE, Edith HARTMANN et Claude AMRA

myriam.zerrad@fresnel.fr

Light Scattering Group (CONCEPT)

