

TUNABLE COHERENCE FOR STRAYLIGHT SUPPRESSION IN HIGH PRECISION INTERFEROMETERS

07.06.2022 GRASS 2022 – Padova, Italy

Daniel Voigt

PhD student, Institute for Experimental Physics, University Hamburg

© LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet) – Dancing Duo of Black Holes

Motivation

PRN modulation for tunable coherence

Time-domain simulation

Outlook

Motivation

PRN modulation for tunable coherence

Time-domain simulation

Motivation

- sensitivity limited in low frequency range
- scattered light is major factor here
- non-stationary noise

- *non-linear* coupling
- frequency *up-conversion*
- amplitude- and phase- modulation

Motivation

PRN modulation for tunable coherence

Time-domain simulation

Concept

- phase modulation at GHz
- *"random"* noise as modulation sequence
 → pseudo white-light-interferometer
- *chips* of sequence c_1 generated as 0 or 1
 - \rightarrow modulation of 0 or π

Concept

- pseudo-random-noise (PRN) sequence as input c1
- *m sequence* of length *l*_{seq} ...1011100101110010111001011100101...
- *ideal two-level* autocorrelation function $R(\tau)$

 $d_{coh} = \frac{l_{seq}}{f_{\text{mod}}} \cdot c$

Concept

Influence on the Michelson Output:

- *small- and large-scale dependencies*
- large scale dependent on autocorrelation of PRN sequence

→ tunable coherence

 $P_{out} \propto \frac{1}{2} \cdot (1 + R(\tau) \cos(\omega \tau))$

Concept

				f _{mod} = 1 GHz		f _{mod} = 10 GHz	
laser frequency		1064 nm	l_{seq}	31 chips	16 383 chips	31 chips	16 383 chips
PRN chip	d_{chip}	[cm]		29.9 cm	29.9 cm	2.99 cm	2.99 cm
PRN sequence	d_{coh}	[m]		9.29 m	4 911.50 m	0.93 m	491.15 m

Motivation

PRN modulation for tunable coherence

Time-domain simulation

Simulation

Setup

- analytical expression for both output ports
 - with and without modulation
- modulation following the m-sequence of an n-bit LFSR

 $- l_{seq}(n) = 2^n - 1$

• DC-readout for phase extraction

Simulation

- Model for scattered light delay: $t_{sc} = \frac{d_{sc,0} + d_{sc} \cdot \sin(2\pi f_{sc}t)}{c}$ $t_{sc} = \frac{d_{sc,0} + d_{sc} \cdot \sin(2\pi f_{sc}t)}{c}$
- Analytical solutions for power at *southport* of IFO
 - without modulation:

$$P_{south} = \frac{P_{in}}{2} \left[(1-b) [1 + \cos(2\omega\Delta t)] + b \left[\cos(\omega t_{sc}) + \cos(\omega(2\Delta t + t_{sc})) \right] + b^2 \left[1 - \cos(\omega t_{sc}) \right] \right]$$

with modulation:

$$P_{S,mod} \approx \frac{P_{in}}{2} \left[(1-b) [1 + \cos(2\omega\Delta t)] + \underline{b^2} \right]$$

Simulation

Simple example

Simulation

Turning on modulation

 $d_{sc,\,0}$ = 0.50 m, d_{sc} = 4.70 λ , f_{sc} = 10 Hz, b_{sc} = 0.01 %

Simulation

Parameter

- scattered light parameter:
 - scattered light amplitude b_{sc}
 - offset $d_{sc,0}$
 - movement range d_{sc}
 - frequency f_{sc}

Simulation

More complex example

<i>f_{sc}</i> [Hz]	88.98	48.03	42.07	63.0	6.0			
<i>d_{sc,0}</i> [cm]	53.6							
<i>d</i> _{sc} [λ]	190.3	154.7	70.2	4.08	182.06			
b _{sc}	0.01%							

Simulation

Simulation

Achievable suppression

 $\Delta P_{S,mod} = \frac{P_{in}}{2} \left[R(\tau \neq 0) \ b \left[\cos(\omega t_{sc}) + \cos(\omega(2\Delta t + t_{sc})) + b\cos(\omega t_{sc}) \right] - b \left[R(2\Delta t)\cos(2\omega\Delta t) + 1 \right] + b^2 \right]$

- → realistically in *tabletop experiment*:
- → realistically in *GW detector*:

1 023 chips → -30 dB 65 535 chips → -48 dB

Motivation

PRN modulation for tunable coherence

Time-domain simulation

Outlook

Outlook

Experimental implementation

- tabletop setup of simple Michelson interferometer
- add cavities → step by step towards *dual-recycled enhanced Michelson interferometer*

Thank you for your attention!

07.06.2022 | Daniel Voigt

Sources:

 [1] Craig Cahillane; <u>https://ccahilla.github.io/</u>; visited: 10.03.2022
 [2] Melanie Ast; Quantum-dense metrology for subtraction of back-scatter disturbances in gravitational-wave detection; 2017