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Scientific Background: frequency-dependent squeezing for broadband QN reduction
Quantum noise (QN) already dominates the sensitivity curve of ground-based GW detectors in the high frequency frequency-dependent squeezing (FDS) to be injected through the dark port of the interferometer. However, a more
band (= 300 Hz), and this trend is expected also In the other bands. Currently, the technique adopted by the LIGO compact and cheaper FDS setup could be developed exploiting two other FDS ways: the ponderomotive squeezing
and Virgo collaborations, with the goal of a broadband QN reduction, consists of a frequency-independent and the EPR entanglement. This is of great importance especially in view of the third generation GW detectors such
squeezing (FIS) source coupled with a 300-m-long detuned filter cavity (FC), which produces in reflection as the Einstein Telescope (ET).
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EPR experiment and integration with SIPS
A table-top experiment for testing FDS via EPR entanglement is under implementation at the EGO R&D squeezing process in a Second Harmonic Generator (SHG) cavity, and it is then sent into an Optical Parametric Oscillator
laboratory. EPR squeezing imposes two squeezed beams instead of one (named as signal and idler), and it suffers (OPO), producing two EPR-entangled squeezed vacuum beams. These are injected form the dark port of a small-
from an intrinsic loss of 3 dB with respect to the FC solution. However, it presents great advantages such as: no scale suspended interferometer called SIPS (Suspended Interferometer for Ponderomotive Squeezing). The second
need of hosting infrastructure, and no optical losses due to the FC (1 ppm/m). laser source provides control and locking beams (“auxiliary” laser), whereas the third one is a MOPA laser dedicated
The EPR set up foresees three IR laser lines. The first (“main” laser) experiences a parametric up-conversion to SIPS. The scientific goal is to measure a broadband QN reduction in the SIPS sensitivity curve.
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The preliminary tests allowed to find good ranges for the set of cavity parameters: round-trip length L., 3) Transmitted power A R, = 0.980
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