Flexible and Fast Estimation of Binary Merger Population Distributions with Adaptive KDE

Jam Sadiq 1 , Thomas Dent 1 , and, Daniel Wysocki 2

¹ Instituto Galego de Física de Altas Enerxías, Universidade de Santiago de Compostela, Spain ² University of Wisconsin—Milwaukee, Milwaukee, Wisconsin, USA

Abstract

The LIGO Scientific, Virgo and KAGRA Collaborations recently released the third gravitational wave transient catalog or GWTC-3, significantly expanding the number of gravitational wave (GW) signals from binary compact object mergers. The formation channels of these compact objects are still highly uncertain. To make progress we require a range of methods to characterize their population properties. Here we propose a fast and flexible adaptive bandwidth KDE method to reconstruct the population of LIGO-Virgo merging black hole binaries. We propose this in combination with a fast polynomial fit (to injection results) of the mass-dependent sensitivity as a simple non-parametric method for comparison with 'established' Bayesian hierarchical models. We also demonstrate a robust peak detection algorithm based on awKDE and use it to calculate the significance of the apparent peak in the black hole (BH) mass distribution around $35M_{\odot}$.

3. AwKDE Reconstruction Results

- The GWTC-2 includes events from the O1, O2 and O3a observing runs [5, 6]
- The GWTC-3 includes events from O3b [7] runs and an updated release for data and events up to O3a, called GWTC-2.1 [8]
- Use samples values of observed BBH events, 44 for GWTC-2 and 69 for GWTC-3 set, and compute primary mass, m_1 , and chirp mass, \mathcal{M} , distribution using awKDE

6. Detection of BH mass Function Peak

- Propose a method to detect significance of prominent peak around $35M_{\odot}$ in primary mass distribution
- For a given distribution $\hat{f}(x)$, find all local maxima, denoted $\{x_{j}^{\mathrm{p}}\}$.
- Using a window of given size δ (the choice of δ is discussed below), evaluate the PDF on either side of the peak, $\hat{f}_j^\pm=\hat{f}(x_j^{\rm p}\pm\delta)$
- Compute peak heights using

1. Introduction

- Recent studies [1, 2] used specific functional forms and Bayesian hierarchical analysis for mass distribution of binary mergers from the observed GW events
- We propose **adaptive Kernel Density Estimation** (awKDE) method [3] to answer the same question, but without assuming any functional form of the distribution [4]
- KDE with a single global bandwidth unlikely to give good representation of Binary Black Hole (BBH) distribution

Figure 2: AwKDE for m_1 and \mathcal{M} constructed using 100 random samples from each BH observed event. The median (black solid), 90% confidence interval (black dashed lines) and blue curves are constructed using a bootstrap. Top plots are the results for detected BBH events in GWTC-2, match closely with the results in [1]. Bottom plots are KDE reconstructions from GWTC-3 events, showing additional features at lower masses consistent with the results in [2].

4. Merger Rate Estimation from AwKDE

- Estimate BBH differential merger rate over m_1 using our awKDE results and a fast polynomial fit of the massdependent sensitivity to injection results
- Quantify the **sensitive volume** V, within which a source is detectable based on an approximation for the sensitivity of GW detectors, with corrections to account for the

$$H_j^{\rm p} = \hat{f}(x_j^{\rm p}) - (\hat{f}_j^- + \hat{f}_j^+)/2.$$

• Evaluate the estimated uncertainty at each peak, ϵ_{i}^{p} ,

• Determine the most significant peak by maximizing a detection statistic, \mathcal{D} , which combines H_j^p and ϵ_j^p

Figure 5: Peak detection algorithm for KDEs using a window size δ (green lines), uncertainty estimates, ϵ (brown dashed lines), and peak heights (vertical blue/black lines) around each peak.

- Tune bandwidth, $h,\,\delta,$ and choice of detection statistic ${\cal D}$ and use ROCs to get optimized results

 $\delta = 3h, \ \mathcal{D} = H_p/\hat{\epsilon}_p$

- For real data GWTC-2 (GWTC-3) events we get $\mathcal{D} =$ **2.85 (3.36)**
- Using background data from hyper-parameters of truncated power law in [1] with sensitive volume corrections,

Figure 1: Fixed global bandwidth versus awKDE reconstruction of primary BH masses using GWTC-2 detected events. The fixed bandwidth KDE overestimates the width (underestimates the height) of the observed peak around $35M_{\odot}$, but also yields a probably unphysical gap in the estimated distribution around $80M_{\odot}$

- Observed gravitational wave events are sufficient to use in an awKDE to address the bandwidth problem and estimate the mass distribution of binary mergers
- This method will validate/check the model assumptions of the standard Bayesian analysis
- Potentially **discover features** not described by models
- Fast and computational efficient method

2. Method

- Use an open source AWKDE [3] code and modify it.
- Using an initial global bandwidth choice to make a pilot Gaussian KDE,

 $\hat{f}(x) = n^{-1} \sum_{i=1}^{n} \frac{1}{h\lambda_i} K\left(\frac{x - X_i}{h\lambda_i}\right), \quad \lambda_i = 1$

- Derive local (adaptive) bandwidth from pilot KDE & sensitivity parameter, $0 \le \alpha \le 1$

$$\lambda_i = \left(\frac{\hat{f}_0(X_i)}{q}\right)^{-\alpha}, \quad \log g = n^{-1} \sum_{i=1}^n \log \hat{f}_0(X_i)$$

actual behaviour of searches in real data

Figure 3: Rate estimates using awKDE and sensitive volume for BBH events in GWTC-3. Black curves show the rate estimate using the KDE reconstruction in the bottom left panel of Fig. 2 and a fit to search sensitivity, compared with the FLEXIBLE MIXTURES (FM), POWER LAW + SPLINE (PS), and POWER LAW + PEAK (PP) mass models, as reported in [2].

5. Two Dimensional AwKDE

• Estimate two dimensional awKDE for cosmological evolution of BH mass distribution using PE values for m_1 in the source frame and luminosity distance D_L for BBH events in GWTC-3 [7]

we get FAP, ${\cal F}=0.00013$, (0.0012)

• The resulting peak detection **significance** is **3.6** σ , **(3.0** σ)

7. Conclusion and Future

- Introduce a **fast and efficient method** of using awKDE to get binary merger population distributions
- AwKDE results can be used for rate estimates
- AwKDE results can be used for **sanity checks for computational extensive models** for binary merger population distributions
- Method can be extended for higher dimensions and can have possible application in cosmology
- Develop a statistic for peak prominence to probe if it is a real astrophysical feature or a random excess

References

- [1] R. Abbott et al. Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog. 10 2020.
- [2] R. Abbott et al. The population of merging compact binaries inferred using gravitational waves through GWTC-3. 11 2021.
- [3] Thorben Menne. awKDE code. https://github.com/ mennthor/awkde, with modifications at https://github.com/

• Final KDE uses the local bandwidth

• Determine optimum initial bandwidth and α by leaveone-out cross validation with

 $\log \mathcal{L}_{\text{LOO}} = \sum_{i=1}^{n} \log \hat{f}_{\text{LOO},i}(X_i),$ where $\hat{f}_{\text{LOO},i}$ is the KDE constructed from all samples except X_i

• Compute awKDE for primary mass m_1 and chirp mass \mathcal{M} using samples of PE results

 Compute uncertainty estimates using bootstrap technique **Figure 4:** AwKDE over the source frame primary mass and luminosity distance for BBH events in GWTC-3. Plot shows the distribution reconstructed from 100 PE samples per event with features around $10M_{\odot}$ and $35M_{\odot}$ appear to be present consistently over different distances.

JAMSADIQ/awkde, 2021. [Online; accessed Jul 2021].

- [4] Jam Sadiq, Thomas Dent, and Daniel Wysocki. Flexible and Fast Estimation of Binary Merger Population Distributions with Adaptive KDE. 12 2021.
- [5] B. P. Abbott et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. *Phys. Rev. X*, 9(3):031040, 2019.
- [6] R. Abbott et al. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run. *Phys. Rev. X*, 11:021053, 2021.
- [7] R. Abbott et al. GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. 11 2021.
- [8] R. Abbott et al. GWTC-2.1: Deep Extended Catalog of Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run. 8 2021.

