Elastic Loss in Amorphous Zirconia-Titania Coatings Elenna Capote, Satoshi Tanioka, Nicholas Didio, Steven Penn, Stefan/Ballmer

Syracuse University LIGO Scientific Collaboration

GRASS2022 • June 6 2022 • LIGO-G2200396

Background and Design

Low-loss Amorphous Coatings for Future Detector Upgrades

- Goal: find high index of refraction materials that withstand the hightemperature annealing that lowers elastic loss
- Tetrahedral metal dioxides that relax into low-loss, corner-sharing bonds are ideal
 - Similar to silica, the low index layer in current LIGO mirrors

$$S_x(f) = \frac{4k_B T d}{f Y w^2 \pi^2} \phi_{\text{eff}}(f)$$

A+ Noise Budget design curve, L. Barsotti, L. McCuller, M.Evans, P. Fritschel

Project Design

Cesarini, E., et al. "A "gentle" nodal suspension for measurer of the acoustic attenuation in materials." Review of Scient Instruments 80.5 (2009): 053904.

- This study uses single-layer Zirconia-Titania mixtures in three ratios: 2:1, 1:1, 1:2
 - o 6 samples in total deposited by CSU collaborators
- All deposited with IBS on blank 1mm thick, 76mm diameter silica disks with measured high Q (low loss)
- Coating loss measured as-deposited, and then after every annealing step between 300 C and 550 C (50 or 100 C increments)
- 1—inch witness samples annealed alongside 3-inch disks for XRD measurements to track crystallization
- Coating loss measured in a multimodal gentle nodal suspension, can detect several modes at a time (ignoring modes damped by suspension)

Multimodal GeNS Set up

- Samples suspended on sapphire lens (GeNS), etched copper exciter extends over diameter of sample to deliver high voltage excitation
 - Band-limited white noise excitation spectrum
- 2 mW HeNe laser used as optical lever, QPD board reads out signal to a multimodal DAQ
- Measurements performed at vacuum (below 1e-5 torr)

We can excite and detect ringdowns of 13 modes in one run!

Zirconia-Titania coated (1:2) 1 mm silica substrate, annealed to 450C

1600 V band-limited white noise excitation applied for 3 minutes

Analysis Methods

Two Methods of Analysis

- Data acquisition performed by MultiQ, multimodal LABView program that tracks spectra in real-time and outputs time series from X, Y, and SUM channels
- Peak frequencies are identified as modes to perform two methods of analyses: frequency domain exponential decay and time series sinusoidal decay: calculate tau

__+/~

$$Q = 1/\phi = \pi f \tau$$

$$\phi_{coated}(f_0) = \phi_{substrate}(f_0) + \frac{E_{coating}}{E_{substrate}} \phi_{coating}(f_0)$$

$$R$$

Implementing Time Series Analysis

- By applying digital filters (similar to a lock-in amplifier), a large time series file with several detected modes can be reduced to several smaller files centered around the frequencies of interest
 - By applying 2 Hz bandpass and heterodyne method
- Quasi-degenerate peaks easy to remove via notch filtering
- Phase information from signal can show frequency shift over length of run
 - Fitting phase shift and reapplying in heterodyne can account for drift

Secondary Peak removal

Mode geometry image created by Andri Gretarsson

- Dilution factors are generated from a finite element analysis performed in COMSOL
- Use estimates of Young's modulus for Zir-Ti mixtures from literature: Y_Zir = 215 GPa, Y_Ti = 147 GPa

220 — 210 GPa Annealed at 400 & 600 C. ***** F. Samiee, K. Raeissi & M. A. Golozar (2013) "Nanoindentation testing of pulse electrodeposited thin zirconia coatings", Surface Engineering, 29:10, 726-730, DOI: 10.1179/1743294413Y.0000000204 I47 GPa (Ion Plating). ****
O. Anderson · C. R. Ottermann · R. Kuschnereit · P. Hess · K. Bange Density and Young's modulus of thin TiO2 films
Fresenius J Anal Chem (1997) 358:315–318 – © Springer-Verlag 1997

Results

Single Layer Zirconia(50%)-Titania(50%) n = 2.37, Y = 181 GPa

Conclusions

- Zirconia-Titania mixtures show promise as a lowloss, high-index layer
 - More investigation required: mixture ratios, absorption, scatter
- Up next: adding Yttria for more stability => anneal to higher temperatures
- First amorphous coating studied by the Syracuse room temperature multimodal GeNS
 - Multimodal DAQ a success, time series analysis effective

Thank you!

Extra Slides

Andri Gretarsson, Thermoelastic and Measured Loss in AlGaAs, OWG presentation, LIGO-G2101886

Zr(2):Ti(1) XRD Scans

24

Zr(1):Ti(1) XRD Scans

Zr(1):Ti(2) XRD Scans

