Optical properties of titania-tantala coatings at cryogenic temperatures VCRD group Genova, Italy: Michele Magnozzi, Maurizio Canepa, Gianluca Gemme, and Francesco Bisio (CNR-SPIN) Samples produced at LMA, Lyon, France by: Massimo Granata, Christophe Michel, Laurent Pinard #### **Motivation** The behavior of GWD mirrors at cryo temperatures might be different from that at room temperature: - T-dependent properties: coating, substrate - Ambiental conditions: 'ice', adsorbates Information about the properties of the coatings at cryo temperatures is limited. #### **Motivation** The behavior of GWD mirrors at cryo temperatures might be different from that at room temperature: - T-dependent properties: coating, substrate - Ambiental conditions: 'ice', adsorbates Information about the properties of the coatings at cryo temperatures is limited. A **new setup for cryo-optic measurements** is being developed at the Università di Genova – INFN Genova, with the aim to **systematically study the optical properties** of coatings and substrates at cryo temperatures. # The setup #### Cryostat with optical access (500 to 4.2 K) - small inner volume - can be used with nitrogen or helium - high vacuum (10⁻⁶ mbar) to mitigate ice formation - 2 sets of windows ### The setup - small inner volume - can be used with nitrogen or helium - high vacuum (10⁻⁶ mbar) to mitigate ice formation - 2 sets of windows #### Spectroscopic ellipsometer (190-2500 nm) - Large spectral range available (UV-vis-IR) with very good spectral resolution (1 datapoint every nm) - Fully automated measurement # The samples #### I) Crystalline silicon substrate Silicon is the most suitable substrate for ellipsometry measurements #### II) Titania-tantala coating, NOT annealed - Ti/(Ti+Ta): 0.21 - Thickness: 503 nm - Substrate: silicon wafer #### III) Titania-tantala coating, annealed - Ti/(Ti+Ta): 0.21 - Thickness: 513 nm - Substrate: silicon wafer Titania-tantala coatings produced and annealed (10 h, 500 °C) at LMA # Strategy # Ellipsometry: the basics $$\frac{\tilde{r}_p}{\tilde{r}_s} = \tan \Psi \exp(i\Delta)$$ $$\psi = \tan^{-1} \left(\frac{|r_{\rm p}|}{|r_{\rm s}|} \right)$$ $$\Delta = \delta_{\rm rp} - \delta_{\rm rs}$$ A model is required to extract information of interest (thickness, refractive index, energy gap...) from the ellipsometry measurements In very thin transparent films, the Delta variation is proportional to the film thickness, while Psi is almost unchanged. In particular, **Delta decreases for increasing film thickness** # Cooling the samples: real-time monitoring Cooling rate & initial pressure have effects over the ice formation: - Thickness - Time required to stabilize at the lowest temperature # Cooling the samples: real-time monitoring Cooling rate & initial pressure have effects over the ice formation: - Thickness - Time required to stabilize at the lowest temperature Higher cooling rates yielded thinner overlayers and quicker stabilization. Delta variation is not linear during cooling. # The ice issue: general remarks Ice is a material that can exhibit many different forms (structure, density...) depending on the conditions in which it is formed. | Form | Density $\left(\frac{g}{cm^3}\right)$ | Temperature Range (K) | |-------|---------------------------------------|-----------------------| | I_h | 0.92 | > 160 | | I_c | 0.93 | 136 - 160 | | LDA | 0.94 | 15 - 136 | | HDA | 1.17 | < 15 | J. M. Labello, PhD Thesis University of Tennessee, 2011 #### Relevant facts: - I_h is the ice found in nature (the one most studied) - I_h and I_c have 'practically identical' optical properties - I_h has very low absorption coefficient (<10⁻⁵ around 1 μ m). Birefringence is very slight. # The ice layer: modelling • The presence of ice can be effectively modeled with a Cauchy formula. Once the ice layer is properly taken into account, it no longer affects the analysis of the underlying coating. #### **Substrate T-induced variations** - The dielectric function of the substrate shows **relatively large variations with the temperature** (compatible with the literature, see for example Lautenschlager Phys.Rev. B 36 1987) - Very small variations between 75 K and 4 K (not reported here) - Dielectric function determined through a point-by-point fit excellent agreement with the experimental data. # Titania-tantala coatings: SE data at room temperature # Modelling the optical properties of titania-tantala coatings The optical properties of Titania-tantala coatings can be effectively modelled by using a Cody-Lorentz model (CL) [A. Amato et al., Sci. Rep. 2020] [A. Amato, M. Magnozzi et al., in preparation] The CL model explicitly takes into account the **Urbach Tail**, related to the disorder in the coating. The energy spread of the Urbach tail is indicated through the Urbach Energy E_{υ} . This can be described as a sum of three terms: $$E_U = (E_U)_T + (E_U)_X + (E_U)_C$$ T=temperature-induced disorder X=structural 'disorder' C=compositional 'disorder' # Model fitting at different temperatures: not annealed titania-tantala - The fit remains good at different temperatures. - Sizable variations in the region of the onset of absorption: Urbach energy, energy gap # Model fitting at different temperatures: annealed titania-tantala - The fit remains good at different temperatures. - Sizable variations in the region of the onset of absorption: Urbach energy, energy gap ### Dielectric function comparison: not-annealed coating | Temperature (K) | Urbach Energy (meV) | |-----------------|---------------------| | 293 | 155 | | 75 | 135 | | 4 | 132 | At 4 K, the Urbach energy of this sample is reduced by ~15% 14 # Dielectric function comparison: annealed coating No changes detected in the Urbach energy – T-induced variations are mainly described by a shift in the energy gap The onset of absorption show different T-induced variations in annealed and not annealed coatings ### Refractive index: silicon substrate | Silicon substrate | n @ 1064 nm | n @ 1550 nm | n @ 2000 nm | |-------------------|-------------|-------------|-------------| | 300 K | 3.57(2) | 3.48(8) | 3.45(1) | | 75 K | 3.52(4) | 3.44(5) | 3.40(7) | | 4 K | 3.52(4) | 3.44(6) | 3.40(7) | #### Refractive index: silicon substrate | Silicon substrate | n @ 1064 nm | n @ 1550 nm | n @ 2000 nm | |-------------------|-------------|-------------|-------------| | 300 K | 3.57(2) | 3.48(8) | 3.45(1) | | 75 K | 3.52(4) | 3.44(5) | 3.40(7) | | 4 K | 3.52(4) | 3.44(6) | 3.40(7) | **300 K to 75 K:** n decreases by ~0.05 #### Refractive index: silicon substrate | Silicon substrate | n @ 1064 nm | n @ 1550 nm | n @ 2000 nm | |-------------------|-------------|-------------|------------------------| | 300 K | 3.57(2) | 3.48(8) | 3.45(1) | | 75 K | 3.52(4) | 3.44(5) | 3.4 <mark>0</mark> (7) | | 4 K | 3.52(4) | 3.44(6) | 3.40(7) | #### 300 K to 75 K: n decreases by ~0.05 #### 75 K to 4 K: no variations detected (thermo-optic coefficient of silicon becomes really small at low T) Komma et al., *Appl. Phys. Lett.* 101, 041905, 2012 #### Refractive index: titania-tantala | NOT annealed | n @ 1064 nm | n @ 1550 nm | n @ 2000 nm | |--------------|-------------|-------------|-------------| | 300 K | 2.10(40) | 2.08(80) | 2.07(86) | | 75 K | 2.10(17) | 2.08(59) | 2.07(63) | | 4 K | 2.10(17) | 2.08(59) | 2.07(64) | | annealed | n @ 1064 nm | n @ 1550 nm | n @ 2000 nm | |----------|-------------|-------------|-------------| | 300 K | 2.08(38) | 2.06(81) | 2.05(86) | | 75 K | 2.08(33) | 2.06(79) | 2.05(84) | #### Refractive index: titania-tantala | NOT annealed | n @ 1064 nm | n @ 1550 nm | n @ 2000 nm | |--------------|-------------|-------------|-------------| | 300 K | 2.10(40) | 2.08(80) | 2.07(86) | | 75 K | 2.10(17) | 2.08(59) | 2.07(63) | | 4 K | 2.10(17) | 2.08(59) | 2.07(64) | | annealed | n @ 1064 nm | n @ 1550 nm | n @ 2000 nm | |----------|-------------|-------------|-------------| | 300 K | 2.08(38) | 2.06(81) | 2.05(86) | | 75 K | 2.08(33) | 2.06(79) | 2.05(84) | The refractive index has **little** or **very little dependence on temperature** for not-annealed and annealed sample, respectively • Cryo setup for spectroscopic ellipsometry - Cryo setup for spectroscopic ellipsometry - Nanometric ice layer detected and modelled - Cryo setup for spectroscopic ellipsometry - Nanometric ice layer detected and modelled - Different behavior of annealed and not annealed coatings in the region of the onset of absorption - Cryo setup for spectroscopic ellipsometry - Nanometric ice layer detected and modelled - Different behavior of annealed and not annealed coatings in the region of the onset of absorption - T-induced variations in the refractive index: small in not-annealed coating, smaller in annealed ones - Cryo setup for spectroscopic ellipsometry - Nanometric ice layer detected and modelled - Different behavior of annealed and not annealed coatings in the region of the onset of absorption - T-induced variations in the refractive index: small in not-annealed coating, smaller in annealed ones - Possibility to study other kinds of coatings in a variety of temperature and pressure conditions ### Perspectives: T-dependent in situ optical characterization Possibility to study **annealing and cooling in real time** with spectroscopic ellipsometry In collaboration with F. Bisio (CNR-SPIN), Ermes Peci (UniGe) #### **Thanks** - Maurizio Canepa Università di Genova - Gianluca Gemme INFN Genova - Francesco Bisio CNR-SPIN - Massimo Granata LMA - Christophe Michel LMA - Laurent Pinard LMA