







# Optical properties of titania-tantala coatings at cryogenic temperatures

VCRD group Genova, Italy:
Michele Magnozzi, Maurizio Canepa, Gianluca Gemme,
and Francesco Bisio (CNR-SPIN)

Samples produced at LMA, Lyon, France by: Massimo Granata, Christophe Michel, Laurent Pinard

#### **Motivation**

The behavior of GWD mirrors at cryo temperatures might be different from that at room temperature:

- T-dependent properties: coating, substrate
- Ambiental conditions: 'ice', adsorbates

Information about the properties of the coatings at cryo temperatures is limited.

#### **Motivation**

The behavior of GWD mirrors at cryo temperatures might be different from that at room temperature:

- T-dependent properties: coating, substrate
- Ambiental conditions: 'ice', adsorbates

Information about the properties of the coatings at cryo temperatures is limited.

A **new setup for cryo-optic measurements** is being developed at the Università di Genova – INFN Genova, with the aim to **systematically study the optical properties** of coatings and substrates at cryo temperatures.

# The setup



#### Cryostat with optical access (500 to 4.2 K)

- small inner volume
- can be used with nitrogen or helium
- high vacuum (10<sup>-6</sup> mbar) to mitigate ice formation
- 2 sets of windows

### The setup





- small inner volume
- can be used with nitrogen or helium
- high vacuum (10<sup>-6</sup> mbar) to mitigate ice formation
- 2 sets of windows



#### Spectroscopic ellipsometer (190-2500 nm)

- Large spectral range available (UV-vis-IR) with very good spectral resolution (1 datapoint every nm)
- Fully automated measurement

# The samples

#### I) Crystalline silicon substrate

Silicon is the most suitable substrate for ellipsometry measurements

#### II) Titania-tantala coating, NOT annealed

- Ti/(Ti+Ta): 0.21

- Thickness: 503 nm

- Substrate: silicon wafer

#### III) Titania-tantala coating, annealed

- Ti/(Ti+Ta): 0.21

- Thickness: 513 nm

- Substrate: silicon wafer

Titania-tantala coatings produced and annealed (10 h, 500 °C) at LMA

# Strategy



# Ellipsometry: the basics



$$\frac{\tilde{r}_p}{\tilde{r}_s} = \tan \Psi \exp(i\Delta)$$

$$\psi = \tan^{-1} \left( \frac{|r_{\rm p}|}{|r_{\rm s}|} \right)$$
$$\Delta = \delta_{\rm rp} - \delta_{\rm rs}$$

A model is required to extract information of interest (thickness, refractive index, energy gap... ) from the ellipsometry measurements

In very thin transparent films, the Delta variation is proportional to the film thickness, while Psi is almost unchanged. In particular, **Delta decreases for increasing film thickness** 

# Cooling the samples: real-time monitoring

Cooling rate & initial pressure have effects over the ice formation:

- Thickness
- Time required to stabilize at the lowest temperature

# Cooling the samples: real-time monitoring

Cooling rate & initial pressure have effects over the ice formation:

- Thickness
- Time required to stabilize at the lowest temperature

Higher cooling rates yielded thinner overlayers and quicker stabilization. Delta variation is not linear during cooling.



# The ice issue: general remarks

Ice is a material that can exhibit many different forms (structure, density...) depending on the conditions in which it is formed.

| Form  | Density $\left(\frac{g}{cm^3}\right)$ | Temperature Range (K) |
|-------|---------------------------------------|-----------------------|
| $I_h$ | 0.92                                  | > 160                 |
| $I_c$ | 0.93                                  | 136 - 160             |
| LDA   | 0.94                                  | 15 - 136              |
| HDA   | 1.17                                  | < 15                  |

J. M. Labello, PhD Thesis University of Tennessee, 2011

#### Relevant facts:

- I<sub>h</sub> is the ice found in nature (the one most studied)
- I<sub>h</sub> and I<sub>c</sub> have 'practically identical' optical properties
- $I_h$  has very low absorption coefficient (<10<sup>-5</sup> around 1  $\mu$ m). Birefringence is very slight.

# The ice layer: modelling





• The presence of ice can be effectively modeled with a Cauchy formula. Once the ice layer is properly taken into account, it no longer affects the analysis of the underlying coating.

#### **Substrate T-induced variations**



- The dielectric function of the substrate shows **relatively large variations with the temperature** (compatible with the literature, see for example Lautenschlager Phys.Rev. B 36 1987)
- Very small variations between 75 K and 4 K (not reported here)
- Dielectric function determined through a point-by-point fit excellent agreement with the experimental data.

# Titania-tantala coatings: SE data at room temperature



# Modelling the optical properties of titania-tantala coatings

The optical properties of Titania-tantala coatings can be effectively modelled by using a Cody-Lorentz model (CL)

[A. Amato et al., Sci. Rep. 2020]

[A. Amato, M. Magnozzi et al., in preparation]



The CL model explicitly takes into account the **Urbach Tail**, related to the disorder in the coating.

The energy spread of the Urbach tail is indicated through the Urbach Energy  $E_{\upsilon}$ .

This can be described as a sum of three terms:

$$E_U = (E_U)_T + (E_U)_X + (E_U)_C$$

T=temperature-induced disorder

X=structural 'disorder'

C=compositional 'disorder'

# Model fitting at different temperatures: not annealed titania-tantala



- The fit remains good at different temperatures.
- Sizable variations in the region of the onset of absorption: Urbach energy, energy gap

# Model fitting at different temperatures: annealed titania-tantala



- The fit remains good at different temperatures.
- Sizable variations in the region of the onset of absorption: Urbach energy, energy gap

### Dielectric function comparison: not-annealed coating







| Temperature (K) | Urbach Energy (meV) |
|-----------------|---------------------|
| 293             | 155                 |
| 75              | 135                 |
| 4               | 132                 |

At 4 K, the Urbach energy of this sample is reduced by ~15%

14

# Dielectric function comparison: annealed coating



No changes detected in the Urbach energy – T-induced variations are mainly described by a shift in the energy gap



The onset of absorption show different T-induced variations in annealed and not annealed coatings

### Refractive index: silicon substrate

| Silicon substrate | n @ 1064 nm | n @ 1550 nm | n @ 2000 nm |
|-------------------|-------------|-------------|-------------|
| 300 K             | 3.57(2)     | 3.48(8)     | 3.45(1)     |
| 75 K              | 3.52(4)     | 3.44(5)     | 3.40(7)     |
| 4 K               | 3.52(4)     | 3.44(6)     | 3.40(7)     |

#### Refractive index: silicon substrate

| Silicon substrate | n @ 1064 nm | n @ 1550 nm | n @ 2000 nm |
|-------------------|-------------|-------------|-------------|
| 300 K             | 3.57(2)     | 3.48(8)     | 3.45(1)     |
| 75 K              | 3.52(4)     | 3.44(5)     | 3.40(7)     |
| 4 K               | 3.52(4)     | 3.44(6)     | 3.40(7)     |

**300 K to 75 K:** n decreases by ~0.05

#### Refractive index: silicon substrate

| Silicon substrate | n @ 1064 nm | n @ 1550 nm | n @ 2000 nm            |
|-------------------|-------------|-------------|------------------------|
| 300 K             | 3.57(2)     | 3.48(8)     | 3.45(1)                |
| 75 K              | 3.52(4)     | 3.44(5)     | 3.4 <mark>0</mark> (7) |
| 4 K               | 3.52(4)     | 3.44(6)     | 3.40(7)                |

#### 300 K to 75 K:

n decreases by ~0.05

#### 75 K to 4 K:

no variations detected (thermo-optic coefficient of silicon becomes really small at low T)



Komma et al., *Appl. Phys. Lett.* 101, 041905, 2012

#### Refractive index: titania-tantala

| NOT annealed | n @ 1064 nm | n @ 1550 nm | n @ 2000 nm |
|--------------|-------------|-------------|-------------|
| 300 K        | 2.10(40)    | 2.08(80)    | 2.07(86)    |
| 75 K         | 2.10(17)    | 2.08(59)    | 2.07(63)    |
| 4 K          | 2.10(17)    | 2.08(59)    | 2.07(64)    |

| annealed | n @ 1064 nm | n @ 1550 nm | n @ 2000 nm |
|----------|-------------|-------------|-------------|
| 300 K    | 2.08(38)    | 2.06(81)    | 2.05(86)    |
| 75 K     | 2.08(33)    | 2.06(79)    | 2.05(84)    |

#### Refractive index: titania-tantala

| NOT annealed | n @ 1064 nm | n @ 1550 nm | n @ 2000 nm |
|--------------|-------------|-------------|-------------|
| 300 K        | 2.10(40)    | 2.08(80)    | 2.07(86)    |
| 75 K         | 2.10(17)    | 2.08(59)    | 2.07(63)    |
| 4 K          | 2.10(17)    | 2.08(59)    | 2.07(64)    |

| annealed | n @ 1064 nm | n @ 1550 nm | n @ 2000 nm |
|----------|-------------|-------------|-------------|
| 300 K    | 2.08(38)    | 2.06(81)    | 2.05(86)    |
| 75 K     | 2.08(33)    | 2.06(79)    | 2.05(84)    |



The refractive index has **little** or **very little dependence on temperature** for not-annealed and annealed sample, respectively









• Cryo setup for spectroscopic ellipsometry









- Cryo setup for spectroscopic ellipsometry
- Nanometric ice layer detected and modelled









- Cryo setup for spectroscopic ellipsometry
- Nanometric ice layer detected and modelled
- Different behavior of annealed and not annealed coatings in the region of the onset of absorption









- Cryo setup for spectroscopic ellipsometry
- Nanometric ice layer detected and modelled
- Different behavior of annealed and not annealed coatings in the region of the onset of absorption
- T-induced variations in the refractive index: small in not-annealed coating, smaller in annealed ones









- Cryo setup for spectroscopic ellipsometry
- Nanometric ice layer detected and modelled
- Different behavior of annealed and not annealed coatings in the region of the onset of absorption
- T-induced variations in the refractive index: small in not-annealed coating, smaller in annealed ones
- Possibility to study other kinds of coatings in a variety of temperature and pressure conditions

### Perspectives: T-dependent in situ optical characterization



Possibility to study **annealing and cooling in real time** with spectroscopic ellipsometry In collaboration with F. Bisio (CNR-SPIN), Ermes Peci (UniGe)







#### **Thanks**

- Maurizio Canepa Università di Genova
- Gianluca Gemme INFN Genova
- Francesco Bisio CNR-SPIN
- Massimo Granata LMA
- Christophe Michel LMA
- Laurent Pinard LMA