Studies of the electro-optic noise in crystalline coatings and cryogenic coating mechanical losses

Satoshi Tanioka, Nicholas Didio, Daniel Vander-Hyde, Elenna Capote, Steven Penn, and Stefan Ballmer

Syracuse University

GRASS Jun. 6, 2022

Contents

- Electro-optic noise in crystalline AlGaAs coating
- Cryogenic Gentle Nodal Suspension (GeNS)
- Summary

Contents

- Electro-optic noise in crystalline AlGaAs coating
- Cryogenic Gentle Nodal Suspension (GeNS)
- Summary

Purpose of this experiment

- Feasibility study to realize crystalline AlGaAs coated mirrors in gravitational wave (GW) detectors.
- Investigate the noise in crystalline AlGaAs coating mirror induced by fluctuations in the electric field.
 - ✓ Electro-Optic noise
 - ✓ Electric field couples to "cavity length"

Schematic

Mirror mount

Made of machinable glass - MACOR [1]

front electrodes

Block diagram

Block diagram

Block diagram

Slide 9

Obtained TF

Electric field also couples through mechanical motion.

Electric field

- ✓ Perpendicular to the sample mirror surface
- ✓ An effective 3D electro static solution

Electric field

41.7[(V/m)/V]
Flat in measured frequency region

PZT efficiency

- Assume flat response of laser PZT
- > 1.6 MHz/V

✓ obtained by cavity scan

https://klog.icrr.u-tokyo.ac.jp/osl/?r=8378

Assume flat up to ~100 kHz

Result

- > EO effect is induced in P- or S-polarization
- > Focusing on the frequency range 20 50 kHz
- \triangleright Difference is smaller than 10^{-16} [m/(V/m)]
 - \triangleright roughly $\sim 5 \times 10^{-17} [m/(V/m)]$
- > Further characterization is ongoing

A+ Design Sensitivity + Crystal Coating (Mean Value)

Implications

- > Strain sensitivity is $\sim 10^{-24} [1/\text{rtHz}] @ 100 \text{ Hz}$
- Fluctuations in the electric field is 3×10^{-6} [(V/m)/rtHz]
 - ✓ Buikema et al. 2020
- > Upper limit (strain sensitivity): $\frac{2 \times 3 \times 10^{-6} [(V/m)/rtHz] \times 5 \times 10^{-17} [m/(V/m)]}{4 \times 10^{3} [m]} = 7.5 \times 10^{-26} [1/rtHz]$
- 10 times below the strain sensitivity
 -> The EO effect in crystalline AlGaAs coatings will not limit the sensitivity

Contents

- Electro-optic noise in crystalline AlGaAs coating
- Cryogenic Gentle Nodal Suspension (GeNS)
- Summary

Cryogenic GeNS

- > To develop low thermal noise coatings at cryogenic temperature.
- To understand the origin of mechanical loss of coatings.

Cryostat

- GeNS is housed inside the cryostat.
- Main components are made of copper.
 - ✓ high thermal conductivity
- Both 3 inch and 4 inch samples can be measured by switching the holders.
- Sample is suspended by a sapphire lens.

Optical layout

- ~2 m arm length.
- \sim 100 µW beam power at QPD
- ~200 μm beam size at QPD
- Almost the same sensitivity to disk motions compared to Caltech's GeNS

Test with Fused silica disk

- Check the performance at room temperature.
- \triangleright Extrinsic loss is below 5×10^{-8} .

3 inch Silicon disk

4 inch Silicon disk

CryoGeNS

- Cryogenic GeNS has been developed.
- The performance of the cryo GeNS is good to measure the high Q-values.
 - ✓ both at room temperature and cryogenic temperature
- Coatings to be measured
 - ✓ amorphous coatings (deposited at CSU)
 - \Box SiO₂
 - □ a-Si
 - ✓ 4 inch AlGaAs coating

Contents

- Electro-optic noise in crystalline AlGaAs coating
- Cryogenic Gentle Nodal Suspension (GeNS)
- Summary

Summary

- ➤ The electro-optic effect in crystalline AlGaAs coatings has been investigated.
 - ✓ the upper limit is well below the design sensitivity.
 - -> not be a limiting noise source
- Cryogenic GeNS has been developed.
 - ✓ capable to both 3 inch and 4 inch diameter disks
 - ✓ works between 15 300 K
 - ✓ performance was verified at both room temperature and cryogenic temperature
 - ✓ ready to measure Qs at cryogenic temperature

Appendix

HVA

Trek 10/10B-HS

High Speed, High Voltage Amplifier, Output Voltage 0 to ±10 kV DC or Peak AC

The Advanced Energy Trek 10/10B-HS is a DC-stable, high-speed, high-voltage power amplifier that showcases precise control of output voltages. It features an all-solid-state design, high slew rate, wide bandwidth, and low-noise operation.

- Output Voltage: 0 to ±10 kV DC or Peak AC
- Output Current: 0 to ±10 mA DC or 40 mA peak AC for 1 ms
- Slew Rate: Greater than 700 V/µs
- Large Signal Bandwidth: DC to greater than 19.5 kHz (-3dB)
- Gain: 1000 V/V fixed

https://www.advancedenergy.com/products/high-voltage-products/high-voltage-amplifiers/standard-high-speed-amplifiers/trek-1010b-hs/

OLG

HVA

Orientation

a-SI

