Wavefront Sensing with a Coupled Cavity for Torsion-Bar Antenna

Yuka Oshima

Ph.D. student, University of Tokyo

Satoru Takano, Ching Pin Ooi, Yuta Michimura, Masaki Ando

Overview

Developing
 <u>TOrsion-Bar Antenna (TOBA)</u>
 to detect GW in low freq.

M. Ando+, PRL 105, 161101 (2010)

- Proposed an improved <u>WaveFront Sensor</u> with a <u>Coupled</u> cavity (Coupled WFS) as an angular sensor for TOBA
 - Angular signal is amplified
 - Beam jitter noise is small

- Demonstrated Coupled WFS
 - Established control method
 - Evaluated signal amplification

TOBA: TOrsion-Bar Antenna

- Ground-based GW detector for low freq.
 - Final target: 10⁻¹⁹ /√Hz at 0.1 Hz
- Aim to detect the torsional rotation of test masses suspended horizontally
- The resonant frequency of torsional motion is low
 → Good sensitivity in low freq. even on the ground
 - Inexpensive
 - Easy to maintain
 - Science on the ground

Science of TOBA

<u>Astrophysics</u>

- Intermediate mass BH binary merger
- Within ~1 Mpc (Phase-III)
- Within ~10 Gpc (Final)

M. Ando+, PRL 105, 161101 (2010)

- GW stochastic background
- $\Omega_{GW} \sim 10^{-7}$ (Final)

Geophysics

- Newtonian noise
- First direct detection

- Earthquake early warning
- M7 earthquake at a distance of 100 km within 10 sec (Phase-III) | TOBA

Development roadmap of TOBA

Phase-I

Phase-II

Now

Phase-III

Final

Principle test

10⁻⁸ /√Hz (Established) ~20 cm bars Room temp.

Technical demonstration

10⁻¹⁵ /√Hz (Target) 35 cm bars Cryo. Temp. (4 K) **GW** observation

10⁻¹⁹ /√Hz (Target) 10 m bars Cryo. Temp. (4 K)

K. Ishidoshiro+, <u>PRL 106, 161101 (2011)</u> A. Shoda+, PRD 95, 082004 (2017)

T. Shimoda+, Int. J. Mod. Phys. D 29, 1940003 (2020)

Configuration of Phase-III TOBA

Cryogenic suspension Torsion pendulums at 4 K

Optical readout Detect the rotation of the pendulums

Design sensitivity of Phase-III TOBA

- Our group is developing elements
 - Suspension wire with high Q-value at 4 K
 - Cryogenic monolithic optics
 - Wavefront sensor with a coupled cavity (Coupled WFS)

Comparison of angular sensors

Need a sensitive angular sensor to detect the rotation of torsion pendulums

Michelson interferometer	Wavefront sensor Test mass	Coupled WFS This work
	No signal amplification	Signal amplification
Non-parallel of two mirrors		
Asymmetry of two light paths		No amplification of beam jitter
	Narrow range measurement	Narrow range measurement
		Trade-off with signal amplification
	Non-parallel of two mirrors Asymmetry of two light paths	Interferometer No signal amplification Non-parallel of two mirrors Asymmetry of two light paths Narrow range

Wavefront sensor

- <u>WaveFront Sensor</u> (WFS): angular sensor with an optical cavity
- HG10 is generated by mirror tilt
- Detect interference between HG00 and HG10
- Take the difference between left and right signals

- HG00 and HG10 do not resonate simultaneously due to Gouy phase
 - → HG10 is not amplified in the cavity

Coupled wavefront sensor

Coupled wavefront sensor (Coupled WFS):
 wavefront sensor with a coupled cavity

- HG00 and HG10 can resonate simultaneously due to Gouy phase compensation by the auxiliary cavity
 - → HG10 is amplified in the main cavity
 - → Coupled WFS signal is larger than WFS signal
- Beam jitter is not amplified in the main cavity
 - → Better S/N ratio to beam jitter noise

Simulation for Coupled WFS

- Complicated configuration of Coupled WFS
 - → Calculation with simulation software FINESSE

 Signal amplification around resonant points of HG00 and HG10

 No amplification to beam jitter noise

GRAvitational-wave Science&technology Symposium

June 7, 2022

Padova

Experimental demonstration

Goal

5 - 10 Pa

- Evaluate signal amplification
 - Compare the signal intensity of WFS and Coupled WFS
- Establish control method
 - PDH technique for both main and auxiliary cavities

excitation

Design of coupled cavity

- Parameters are designed to enable phase compensation
 - Reflectivity and loss of the auxiliary cavity are important → HR coating is facing the auxiliary cavity
- The main cavity is folded to monitor the transmitted light
- Mirrors are fixed to a spacer to stabilize the alignment

Control method of coupled cavity

- PDH technique with two modulation frequencies
 - 15 MHz for the main cavity
 - 3.5 MHz for the auxiliary cavity
- Hierarchical control for the main cavity
 - To prevent transmitting disturbances from the main cavity to the aux. cavity through laser freq.

Results of cavity locking

Transmitted light with CCD

Main (HG00) Auxiliary (HG10)

 Cavities were successfully locked to HG00 and HG10 simultaneously

Results of signal amplification

- Calibrated the signal intensity of WFS and Coupled WFS with an optical lever
- Calibrated the lock point of the auxiliary cavity with the power of trans. light
- Angular excitation

 Function generator
 20 100 Hz
- ◆ Angular excitation for front mirror
 → Signal amplification

Beam jitter injection→ No amplification

70 cm

Op. lev.

Summary & Future plans

- Developing TOBA to detect GW in low freq.
- Proposed Coupled WFS as an angular sensor for TOBA
- Demonstrated Coupled WFS for TOBA
 - Established control method
 - Evaluated signal amplification

 Plan to suspend the test mass to stabilize the cavity lock

Extra slides

Phase compensation with aux. cavity

- HG00 and HG10 receive different when reflected at the auxiliary cavity
 - → Gouy phase of the main cavity can be canceled

Aux. cavity cannot compensate Gouy phase depending on cavity parameters

June 7, 2022 Padova

Robustness to cavity loss

Discussion

- Current issue
 - High coherence over 40 Hz between two PDH signals
 → FB control is unstable due to narrow-band control
- How to solve
 - Suspend front mirror to reduce disturbance in high freq.
 - Return FB signal to the front mirror to reduce the correlation between PDH signals in high freq.

Simulation with FINESSE

- No analytical solution for linear range
 - → Use interferometer simulation software FINESSE
- Calculate Coupled WFS signal with increasing misalignment

Linear range of Coupled WFS

 Signal intensity and linear range are independent of finesse

 The larger the finesse, the higher signal intensity, and the smaller the linear range

Beam jitter noise of Coupled WFS

 HG10 generated by mirror tilt is amplified in the cavity and goes out to the reflection port

- HG10 in beam jitter is also resonant in the cavity, but the amount in the incident and reflected light is the same (not amplified)
 - → Good S/N ratio for beam jitter noise

Evaluation of cavities

	Quantities	Design values*	Measured values
Main cavity	Finesse	225 – 667	200 ± 20
	Gouy phase [deg]	12.1 - 12.3	12.1 ± 1.0
	Mode-match ratio [%]	_	87 ± 2
Auxiliary cavity	Finesse	$(3.14 - 5.23) \times 10^3$	$(4.1 \pm 0.2) \times 10^3$
	Gouy phase [deg]	9.25 - 9.71	9.54 ± 0.04
	Mode-match ratio [%]	_	94 ± 2

※ Calculated from Layertec spec values

- Measured finesse of aux. cavity is consistent with design
- Measured Gouy phase is consistent with design
 → Phase compensation is possible
- Measured finesse of main cavity is smaller than design
 - → Loss in AR coating is the cause
- Mode match ratio is large enough

Introduced loss to main cavity

Padova