IMRIs in presence of dark matter spikes: The role of eccentricity and accretion

Karydas Theophanes, MSc Student at GRAPPA, UvA

EuCAPT Workshop: Gravitational wave probes of black hole environments

Motivation for dark matter spikes

Initial density profile

Particles will (mostly) self-gravitate Adiabatic growth of central black hole*

^{*}Final profile sensitive to exact formation

Isotropic power-law 'spike'

Particles are bound by the central black hole

$$\rho(r) = \rho_{sp} \left(\frac{r}{r_{sp}}\right)^{-\gamma}$$

Motivation for dark matter spikes

Initial density profile

Particles will (mostly) self-gravitate Adiabatic growth of central black hole*

^{*}Final profile sensitive to exact formation

Isotropic power-law 'spike'

Particles are bound by the central black hole

$$\rho(r) = \rho_{sp} \left(\frac{r}{r_{sp}}\right)^{-\gamma}$$

BH companion interactions with dark matter

For cold dark matter interactions are gravitational:

Static effect:

♦ The potential force of the spike \mapsto Extremely subdominant.

b_{acc}

 b_{max}

Energy transfer and mass conservation for IMRIs

Dynamical friction funnels more energy than what binds the spike^{*}

*Kavanagh et al. Phys. Rev. D 102, 083006 (2020)

Circular DF Feedback: Dynamical friction weakens by many orders

Energy transfer and mass conservation for IMRIs

Eccentric inspirals

The punchline:

- ✤ The spike is strongly depleted → Environmental effects are subdominant to GWs emission.
- ✤ The spike leads to <u>circularization</u>.

Karydas Theophanes