

BIST Barcelona Institute of Science and Technology

Looking for cold dark matter (CDM) subhalos with gravitational waves (GW)

Juan Urrutia, PhD student, 2022, based on work done with Ville Vaskonen and Malcom Fairbairn

Unión Europea

Fondo Europeo

Why light DM halos are very relevant? It is a unique prediction of CDM

inside the collapsed volume.

Adiabatic fluctuations become linear and collapse in halos of the mass that is

https://arxiv.org/abs/1707.04256

Amplification function only wave effects Light halos do not to produce more than one classical path

 $\phi_{\text{lensed}}(f) = F(f, y)\phi_{\text{unlensed}}(f)$

How does it work? Compute the propagator of the GW

$$\phi_{t_{f}} = A \prod_{i} \int dq_{i} e^{iS(q,t_{o},t_{f})} \phi_{t_{o}}$$

$$\phi_f(f) = F(f, y, \rho(x)) \phi_o(f)$$

$$F = \frac{w}{2\pi i} \int_{\text{lensplane}} d\vec{x} e^{iwt_d(x,y)}$$

Heavier masses can be "released" to an smaller \hbar so everything is going to behave more classically or less wavy

How does it work? Wave vs classical behavior

Good for a PBH

$$\rho(r) = M_l \delta^2(x) \quad \longrightarrow \quad \Psi(x) = 10$$

$$M_{\rm Lz} \sim \mathcal{O}\left(1M_{\odot}\right)$$

x

How does it work? Wave vs classical behavior

$$\rho(r) = M_l \delta^2(x) \quad \longrightarrow \quad \Psi(x) = 10$$

Only the classical paths contribute to the integral

х

Detect the effect We try to fit the unlensed waveform instead of Fisher analysis

$$egin{aligned} \Delta\chi^2 &\equiv -2 \left[\max_{oldsymbol{ heta}} \ln \Lambda_T(\phi) - \ln \Lambda_{
m opt}(\phi)
ight] \ &= \min_{oldsymbol{ heta}} \left(\phi_{
m opt} - \phi_T(oldsymbol{ heta}) | \phi_{
m opt} - \phi_T(oldsymbol{ heta})
ight) \ &= 4 \min_{oldsymbol{ heta}} \int \mathrm{d}f \, rac{| ilde{\phi}_{
m opt}(f) - ilde{\phi}_T(f;oldsymbol{ heta})|^2}{S_{
m n}(f)} \end{aligned}$$

We minimize over the amplitude, the event looks closer, and with a constant shift.

$$\Delta \chi^2 = 4 \min_{\lambda, \, \delta \phi_c} \int \mathrm{d}f \, \frac{A(f; \boldsymbol{\theta}_{\mathrm{opt}})^2 |F(f; \boldsymbol{\theta}_{l, \mathrm{opt}}) - \lambda e^{-i\delta \phi_c}|^2}{S_{\mathrm{n}}(f)}$$

Amplification function Only wave effects

To maximize the tiny effect that the halo has on the GW we go to the atom interferometer band.

We can see how everything goes to constant values in the classical limit.

Detect the effect We try to fit the unlensed waveform

$$egin{aligned} \Delta\chi^2 &\equiv -2 \left[\max_{oldsymbol{ heta}} \ln \Lambda_T(\phi) - \ln \Lambda_{
m opt}(\phi)
ight] \ &= \min_{oldsymbol{ heta}} \left(\phi_{
m opt} - \phi_T(oldsymbol{ heta}) | \phi_{
m opt} - \phi_T(oldsymbol{ heta})
ight) \ &= 4 \min_{oldsymbol{ heta}} \int \mathrm{d}f \, rac{| ilde{\phi}_{
m opt}(f) - ilde{\phi}_T(f;oldsymbol{ heta})|^2}{S_{
m n}(f)} \end{aligned}$$

We minimize over the amplitude, the event looks closer, and with a constant shift.

$$\Delta \chi^2 = 4 \min_{\lambda, \, \delta \phi_c} \int \mathrm{d}f \, \frac{A(f; \boldsymbol{\theta}_{\mathrm{opt}})^2 |F(f; \boldsymbol{\theta}_{l, \mathrm{opt}}) - \lambda e^{-i\delta \phi_c}|^2}{S_{\mathrm{n}}(f)}$$

Detect the effect We have first considered Big Bang Observatory (BBO)

makes it very sensitive to unresolved background binaries

It has the best sensitivity of all the projected gravitational wave detectors, so it

BB0

Probability of lensing What is the probability to detect this events?

Probability of lensing What is the probability to detect this events?

Thanks for your time!