PROBING BLACK HOLES WITH QUASI-NORMAL MODES

Sebastian H. Völkel

SISSA – Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy IFPU – Institute for Fundamental Physics of the Universe, Trieste, Italy

Work(s) in collaboration with: Nicola Franchini, Enrico Barausse and Emanuele Berti

EuCAPT Workshop: Gravitational wave probes of black hole environments Sapienza University of Rome

17 June 2022

WHAT ARE (QUASI-)NORMAL MODES?

Basic example: a sum of (damped) oscillations (e.g. guitar string!)

$$y(t) = \sum_{n} A_{n} \exp\left(i\omega_{n}t\right),$$

- excitation coefficients depend on initial data (how one perturbs the system)
- QNMs only depend on unperturbed system (inherent property)

What are (Quasi-)Normal Modes?

Basic example: a sum of (damped) oscillations (e.g. guitar string!)

 $y(t) = \sum_{n} A_{n} \exp\left(i\omega_{n}t\right),$

- excitation coefficients depend on initial data (how one perturbs the system)
- QNMs only depend on unperturbed system (inherent property)

Time evolution of perturbations that scattered with a black hole as observed far away.

SCHWARZSCHILD PERTURBATION POTENTIALS

Perturbation potentials for l = 2 as function of the tortoise coordinate r^* .

SEBASTIAN H. VÖLKEL

Some comments for GR and beyond

Qualitative features of GR (vacuum):

- perturbation equations are separable
- no additional fields or couplings
- · axial and polar perturbations are isospectral

Some comments for GR and beyond

Qualitative features of GR (vacuum):

- · perturbation equations are separable
- no additional fields or couplings
- · axial and polar perturbations are isospectral

"Phenomenological" approach beyond GR:

- · potential terms are being modified
- couplings between known and additional fields are introduced

Some comments for GR and beyond

Qualitative features of GR (vacuum):

- · perturbation equations are separable
- no additional fields or couplings
- · axial and polar perturbations are isospectral

"Phenomenological" approach beyond GR:

- · potential terms are being modified
- couplings between known and additional fields are introduced

"Theory specific" approach:

- · start from a theory, compute background and perturbations
- · clear connections between observations, metric and theory

Some comments for GR and beyond

Qualitative features of GR (vacuum):

- perturbation equations are separable
- no additional fields or couplings
- · axial and polar perturbations are isospectral

"Phenomenological" approach beyond GR:

- · potential terms are being modified
- couplings between known and additional fields are introduced

"Theory specific" approach:

- · start from a theory, compute background and perturbations
- · clear connections between observations, metric and theory

Possible impact of environmental effects:

- · presence of matter modifies the effective potential
- · additional fields could be viewed as environmental effect

MOTIVATION

Extraction of QNMs from binary black hole mergers:

- commonly done for NR simulations (e.g. Giesler et al. ¹, Bhagwat et al.²)
- real (current) data highly non-trivial (e.g. Isi et al.³, Cotesta et al.⁴)
- · highly rewarding to test Kerr hypothesis
- · What would one learn if QNMs deviate from Kerr?

¹Giesler et al., Phys.Rev.X 9 041060 (2019) ²Bhagwat et al. PRD 101 044033 (2020) ³Isi et al., PRL 123 111102 (2019) ⁴Cotesta et al. arxiv:2201.00822

SEBASTIAN H. VÖLKEL

MOTIVATION

Extraction of QNMs from binary black hole mergers:

- commonly done for NR simulations (e.g. Giesler et al. ¹, Bhagwat et al.²)
- real (current) data highly non-trivial (e.g. Isi et al.³, Cotesta et al.⁴)
- · highly rewarding to test Kerr hypothesis
- · What would one learn if QNMs deviate from Kerr?

Assume a few/"all" QNMs would be known from observations:

- Can one recover the effective potential?
- Can one recover the presence of coupling functions to additional fields?
- · How do measurement uncertainties impact the reconstruction?
- What are robust "features"? (PN ~ *M*/*r* like expansion?)

¹Giesler et al., Phys.Rev.X 9 041060 (2019) ²Bhagwat et al. PRD 101 044033 (2020) ³Isi et al., PRL 123 111102 (2019) ⁴Cotesta et al. arxiv:2201.00822

METHODS OVERVIEW

We adopt the parameterized framework to study non-rotating black holes^{5, 6}:

· coupled equations are prototype for rotation and alternative theories

$$f\frac{\mathrm{d}}{\mathrm{d}r}\left(f\frac{\mathrm{d}\boldsymbol{\Phi}}{\mathrm{d}r}\right) + \left[\omega^2 - f\mathbf{V}\right]\boldsymbol{\Phi} = 0,\tag{1}$$

• with $f(r) = 1 - r_0/r$, with r_0 being the location of the event horizon and

$$\boldsymbol{\Phi} = \begin{bmatrix} \Phi^{\text{scalar}}, \Phi^{\text{polar}}, \Phi^{\text{axial}}, \dots \end{bmatrix}.$$
(2)

• it is assumed the potential can be written as ("natural extension" to GR)

$$V_{ij} = V_{ij}^{\text{GR}} + \delta V_{ij}, \qquad \delta V_{ij} = \frac{1}{r_H^2} \sum_{k=0}^{\infty} \alpha_{ij}^{(k)} \left(\frac{r_H}{r}\right)^k$$
(3)

⁵Cardoso et al., PRD 99 104077 (2019) ⁶McManus et al., PRD 100 044061 (2019)

SEBASTIAN H. VÖLKEL

METHODS OVERVIEW

Parametrized framework relates ω with $\alpha^{(k)}$ in a simple way

- approximate expression up to quadratic order in $\alpha^{(k)}$

$$\omega = \omega^{0} + \alpha_{ij}^{(k)} d_{(k)}^{ij} + \alpha_{ij}^{(k)} \partial_{\omega} \alpha_{pq}^{(s)} d_{(k)}^{ij} d_{(s)}^{pq} + \frac{1}{2} \alpha_{ij}^{(k)} \alpha_{pq}^{(s)} e_{(ks)}^{ijpq}$$
(4)

- coefficients $d_{(k)}$, $e_{(ks)}$ are universal, $\alpha^{(k)}$ theory dependent or free parameters
- we extended coefficients to compute the *n* = 1,2 overtones

Modifications to the QNM spectrum. SV, Franchini and Barausse, PRD 105 084046 (2022).

METHOD OVERVIEW: PCA IN A NUTSHELL

What is principal component analysis (PCA)?

- PCA is a well known tool for linear problems
- finds most "efficient basis" describing the "main features" of data

SEBASTIAN H. VÖLKEL

ASSUMPTIONS AND RESULTS

Remarks on our likelihood and QNM "data" (full equations in paper)

- "post processing" idea, assume you know the spectrum directly
- precision of QNMs as proof of principle here 1%
- marginalize over black hole mass ($r_{\rm H}$ with 5%)
- inject accurate QNMs from Leaver code but model with parametrized framework

Assumptions and Results

Remarks on our likelihood and QNM "data" (full equations in paper)

- "post processing" idea, assume you know the spectrum directly
- precision of QNMs as proof of principle here 1 %
- marginalize over black hole mass ($r_{\rm H}$ with 5%)
- inject accurate QNMs from Leaver code but model with parametrized framework

Left: Injection and PCA reconstruction of parametrized deviations of the axial potential only. Right: Injection and PCA reconstruction of parametrized deviations of only symmetric coupling functions, injecting dynamical Chern-Simons as example. SV, Franchini and Barausse, PRD 105 084046 (2022).

FOLLOW-UP QUESTIONS

- Can one constrain individual *α*^(k) and their correlations with an MCMC?
- Are constraints for single parameters robust versus many parameters?
- · What is the role of priors for the studied parameters?
- Do possible correlations of the provided QNMs play a big role?
- Are there more "intuitive" features?

FOLLOW-UP QUESTIONS

- Can one constrain individual *α*^(k) and their correlations with an MCMC?
- Are constraints for single parameters robust versus many parameters?
- · What is the role of priors for the studied parameters?
- Do possible correlations of the provided QNMs play a big role?
- Are there more "intuitive" features?

WKB method connects derivatives of potential peak with QNMs⁷

$$\omega_n^2 = V^{(0)} + i\sqrt{-2V^{(2)}}\left(n + \frac{1}{2}\right) + \sum_i \tilde{\Lambda}_i(n)$$
(5)

RESULTS

Inject GR n = 0.1 QNMs $\vec{\omega}$ with relative errors of 1.0%, 4.7%, 3.4%, 8.2%. We then sample $r_{\rm H}$ and $\alpha^{(k)}$ for k = 0...10. Left violins show rH with one specific $\alpha^{(k)}$ varied at a time, right violins show rH varied with all $\alpha^{(k)}$ at the same time. Different colors correspond to different prior ranges for $\alpha^{(k)}$.

RESULTS

Inject GR n = 0.1 QNMs $\vec{\omega}$ with relative errors of 1.0%, 4.7%, 3.4%, 8.2%. We then sample $r_{\rm H}$ and $\alpha^{(k)}$ for k = 0...10. Left violins show rH with one specific $\alpha^{(k)}$ varied at a time, right violins show rH varied with all $\alpha^{(k)}$ at the same time. Different colors correspond to different prior ranges for $\alpha^{(k)}$.

Inject mock non-GR n = 0,1 QNMs $\vec{\omega}$ with non-zero $\alpha^{(k)}$ for k = 2 and k = 3 (shown in red).

Sebastian H. Völkel

RESULTS

Samlpling derivatives of the effective potential with respect to tortoise coordinate from the "all $\alpha^{(k)}$ " posterior distributions (left sides) versus sampling from the priors of $\alpha^{(k)}$ (right sides). **GR injection**.

RESULTS

Samlpling derivatives of the effective potential with respect to tortoise coordinate from the "all $\alpha^{(k)}$ " posterior distributions (left sides) versus sampling from the priors of $\alpha^{(k)}$ (right sides). **GR injection**.

Samlpling derivatives of the effective potential with respect to tortoise coordinate from the "all $\alpha^{(k)}$ " posterior distributions (left sides) versus sampling from the priors of $\alpha^{(k)}$ (right sides). **Non-GR** injection.

CONCLUSIONS

The Good:

- in principle clean test, less uncertain astrophysics (compared to EHT)
- more precise data becomes available (quest of overtones)
- · semi-analytic techniques and statistical methods can be combined

Open Problems:

- theory specific tests for rotating black holes very hard
- parametrized background metrics exist, but "dynamics" with rotation unclear
- degeneracy of matter vs. modified gravity (in principle) possible

CONCLUSIONS

The Good:

- in principle clean test, less uncertain astrophysics (compared to EHT)
- more precise data becomes available (quest of overtones)
- · semi-analytic techniques and statistical methods can be combined

Open Problems:

- theory specific tests for rotating black holes very hard
- parametrized background metrics exist, but "dynamics" with rotation unclear
- · degeneracy of matter vs. modified gravity (in principle) possible

Grazie mille, thank you very much!