Soliton boson stars as compact objects

Mateja Bošković

SISSA & IFPU (Trieste)

EuCAPT workshop "Gravitational wave probes of black hole environments" 17.06.2022

Based on:

I MB, Barausse [2111.03870]

II Bezares, MB, Liebling, Palenzuela, Pani, Barausse [2201.06113]

(Pseudo-)soliton stars: what and why

- (Pseudo-)soliton stars: localized, finite-energy and stable (long living) solutions of the EoM of a field theory incld. gravity
- Simplest example: boson star (BS) self-gravitating complex scalar w. U(1) Liebling, Palenzuela [1202.5809]
- Motivation 1: connection with dark matter and EU models
 - cosmo evolution of axion DM Hui [2101.11735], inflation relics, phase transitions, solitosynthesis Bertone+ [1907.10610]
- Motivation 2: ECO paradigm ("no stone unturned")
 Giudice, McCullough, Urbano [1605.01209], Cardoso, Pani [1904.05363]
 - * Consistent with known & tested physics? Formation mechanism? Stable (on astro/cosmo scales)?
- Motivation 3: toy model of matter in strong gravity
 - $\star~$ Everything is in the action

Outline

- i What sets the maximal compactness of (S)BS?
- ii How does the form of the potential map onto structural properties of (S)BS?
- iii Can rotating (S)BS form (in the binary collision)?

(i) Buchdahl bound and beyond

- ▶ WEC* + micro stability^{**} \implies Buchdahl bound $C_B \le 0.44$ (constant density star); $C = GM/(Rc^2)$
- ► Causality condition $c_{\rm s} = \sqrt{\partial P / \partial \rho} \le 1$ lowers the Buchdahl bound:
 - * saturated by LinEoS $\rho \propto P$: $C_{\rm B+C} = 0.354$ Urbano, Veermäe [1810.07137]
 - radially stable elastic objects must satisfy C_{EOmax} < 0.376 Alho+ [2107.12272, 2202.00043]

Fig: Alho+ [2202.00043] * $\rho \ge 0 \land \rho + P \ge 0$, ** $P \ge 0 \land dP/d\rho \ge 0$

(i) (Soliton) boson stars

• Complex scalars w. U(1): $\mathscr{L}_{\Phi} = -\partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi - V(|\Phi|)$

- ► Mini BS $[\mu^2 |\Phi|^2] \rightarrow C_{max} \approx 0.11$ ("quantum pressure"), Self-interacting BS $[\lambda |\Phi|^4] \rightarrow C_{max} \approx 0.16$ (radial pressure)
- SBS def by a (multiple) false/degenerate vacua. Simplest: Friedberg, Lee, Pang (1987), Macedo+ [1307.4812]

$$V = \mu^2 |\Phi|^2 \left(1 - 2 \frac{|\Phi|^2}{\sigma_0^2}\right)^2$$

Minkowski limit $M_{\text{Pl}} \rightarrow \infty$: Q-balls Coleman (1985)

Review: Liebling, Palenzuela [1202.5809]

(i) SBSs are maximally stiff and compact

- Thin wall regime: bulk of the star is in the degenerate vacuum
- Effective LinEoS in the bulk $\varphi \approx 1 \rightarrow \varphi' \approx V \approx 0 \rightarrow$ $P \approx \rho \quad [\varphi \equiv \phi/(\sigma_0/\sqrt{2})]$

(
$$c_s$$
)_a \approx
1-4(φ_c -1)+ $\mathcal{O}[(\varphi_c$ -1)²]

• Parameter space scanned w. $\Lambda = \sigma_0/M_{\rm Pl}$; thin wall realizable in the ultra-compact subspace: $\Lambda \stackrel{<}{{}_\sim} 0.25$

(ii) It's not the full potential but the presence of a false vacuum that counts [1/2]: false vacuum

General sextic potential: false vacuum

 Parametrized deviation from the degenerate vacuum V₆ = φ₀² [(μ² - ω₀²)φ²(1 - φ²)² + ω₀²φ²] , φ = φ/φ₀

 Effective LinEoS in the thin wall regime (c_s²)_a = ^{2-(ω₀/μ)²}/_{2+(ω₀/μ)²} + 𝔅[(φ_c - 1)] , C_{max} [<] C_{B+C} - 0.06(ω₀/μ)²

(ii) It's not the full potential but the presence of a false vacuum that counts [2/2]: quartic potential

Non-polynomial quartic potential: $V_4(|\Phi|) = \mu^2 |\Phi|^2 - g(|\Phi|^2)^{3/2} + \lambda |\Phi|^4$

- \star Low-compactness regime (V₆): Mini BS regime
- \star Low-compactness regime (V₄): Q-ball stable branch
- * High-compactness regime: LinEoS universality

(iii) (S)BSs abhor angular momentum [1/3]

- ▶ BS have quantized angular momentum J = kQ, $k \in \mathbb{N}$
- Rotating BS generically suffer from non-axisymmetric instability Sanchis-Gual+ [1907.12565] ...
- ... which can be quenched w. sufficiently strong self-interactions, incl. SBS Siemonsen, East [2011.08247], Dmitriev+ [2104.00962]
- Can rotating SBS form from the binary inspiral of the non-rotating ones?

Fig: Siemonsen, East [2011.08247]

(iii) (S)BSs abhor angular momentum [2/3]

- Binary SBS simulations from Palenzuela+ [1710.09432], Paper II
- Catalogue: 3 \times q = 1, 4 \times q \sim 2 30
- If $M < M_{\text{max}}$ BS will form; else BH
- ► Parameterized condition for the rotating remnant $\frac{J_{c,K}(1+e_J)}{N(M_1)+N(M_2)} > 1 + e_N$ & $C > C_{NAI}$

(iii) (S)BSs abhor angular momentum [3/3]

- For BS + BS → BS exces angular momentum is dashed trough scalar radiation (gravitational cooling) and GW
- Instead of rotating remnants, in two cases exces angular momentum is emitted in the form of blobs
- For q > 1, blobs can induce superkicks v ~ 0.05c
- Do rotating remnants ever form? If not, why?

Other topics addressed

MB, Barausse [2111.03870] "SBS are Q-balls in the time-dependent potential" (analytical solution) SBS w. multiple vacua ["axion BS"] also saturate C_{B+C} Bezares, MB+ [2201.06113] SBS stable under large

- perturbations (SBS+anti-SBS collision)
- $\star\,$ GW signal from SBS binaries
- \star SBS binaries in the LIGO band: distinguishability w.r.t. BH signal via $SNR(h_{BS}-h_{BH}) \rightarrow$ missed detections/biases

Conclusions

SBSs are maximally stiff and compact

- \star Beyond $C_{\rm B+C}$: Physical candidate allowing for positive pressure anisotropicity?
- It's not the full potential but the presence of a false vacuum that counts
 - $\star\,$ Plethora of models \rightarrow universality in the macroscopic properties
- (S)BSs abhor angular momentum
 - $\star~a \neq 0$ probably indicates ECO $\neq BS$ (also axion star)

Supplementary material

(i) Q-balls

Analogue particle perspective: Newtonian dynamics

• Thin wall regime $\phi \sim \sigma_0/\sqrt{2}$, $\omega \ll \mu$

¢

▶ Thick wall regime $\omega \sim \mu$

(i) SBSs are Q-balls in the time-dependent potential

 SBS in the analogue perspective: Newtonian dynamics in the "time"-dependent potential

$$\varphi'' + \left(\frac{2}{r} - \frac{W'}{W}\right)\varphi' = \left[\mathsf{m}^2(1 - 4\varphi^2 + 3\varphi^4) - W^2\right]\varphi$$

$$\mu W = \omega e^{(u-v)/2}$$
 , $\mu m = \mu e^{u/2}$, $\phi = \phi/(\sigma_0/\sqrt{2})$, $ds^2 = -e^v dt^2 + e^u dr^2 + r^2 d\Omega^2$

• Analytical solution for arbitrary $\Lambda \ll 1$

(i) SBS parameter space

Parameter space (Λ ≪ 1): stable mini boson star (MBS) branch (quantum pressure) → unstable Q-ball branch E > µQ → stable Q-ball branch → stable strong-gravity branch → unstable strong-gravity branch

•
$$\Lambda \stackrel{\scriptstyle >}{\scriptstyle \sim} 1$$
 MBS ($V = \mu^2 |\Phi|^2$) regime

(i) SBSs are maximally stiff and compact [2/2]

- ▶ Thin-wall estimates $\langle c_s^2(r) \rangle$ → $C_{B+C}[c_s]$ compare well with the numerical results when $C \rightarrow C_{B+C}$
- ▶ In the thick wall regime bulk and the wall commensurable: $C \ll C_{B+C}$

(ii) It's not the full potential but the presence of a false vacuum that counts [3/3]: multiple vacua

- What about multiple vacua?
- Axion stars: pseudo-solitons with the cos potential $V \sim 1 \cos(\phi/f_a)$ Helfer+ [1609.04724]
- "axion" BS as an axion star proxy Guerra, Macedo, Pani [1909.05515]
- ► "axion" BS maps to stacked vanila SBS $\Lambda_n = \frac{f_a}{m_{\rm Pl}} 2n\pi \sqrt{16\pi}, n \in \mathbb{N}$

Fig (R): Guerra, Macedo, Pani [1909.05515] (background)

(iii) (S)BSs abhor angular momentum

Fig: Siemonsen, East [2011.08247]

(iii) Mass-charge parameter space

(iii) BS-anti-BS case

(iii) SBS QNMs in isolation vs. post-merger

- $\blacktriangleright \omega_R$: good agreement between isolated SBS and post-merger remnants
- $\blacktriangleright \omega_l$: significant discrepancy; it appears that direction correlates w. presence of blobs

(iii) SBS in the LIGO band

SNR

$$\rho(\Delta) = \left[4\int \frac{|\tilde{\Delta}(f)|^2}{S_n(f)}df\right]^{1/2}$$

- Two noise models: O3b single-detector sensitivity (solid), the single-detector design LIGO sensitivity (dashed)
- Large residual SNRs imply missed detections or biases in the parameter estimation

