Black-hole spin alignment and disk breaking: consequences for LISA

Special thanks to Alberto Sesana & Massimo Dotti for insightful discussion

EuCAPT Workshop, Rome, 2022

Nathan Steinle Davide Gerosa

> Institute for Gravitational Wave Astronomy, University of Birmingham Leverhulme Trust Grant No. RPG-2019-350

Binary Black-Hole (BBH)

<u>Supermassive BBHs</u> evolve in gas-poor or gas-rich galactic hosts.

LISA may discriminate these formation channels

[Bogdanovic et al., 2007; Berti et al., 2008; Sesana et al., 2014; Gerosa et al., 2015; Sayeb et al., 2021].

Various processes drive the inspiral:

dynamical friction,

loss-cone scattering of individual stars,

viscous drag from disk migration if in a gas-rich environment, Kelley et al., 2017

and GW emission until merger [Begelman et al., 1980].

If BBHs form with isotropic spin directions θ_1 and θ_2 , i.e., no alignment during dynamical friction phase, then...

... in gas-poor hosts they remain roughly isotropic [Bogdanovic et al., 2007; Barausse, 2012] and through GW emission [Bogdanovic et al., 2007; Gerosa et al., 2015]

spin precession is generic, i.e., precession and nutation of L.

In **gas-rich hosts,** the Bardeen-Petterson effect can align the spins during disk migration.

but this is uncertain!

We examine circumbinary disk migration of BBHs with a systematic approach to the Bardeen-Petterson effect [Gerosa *et al.*, 2020; etc.]:

> accretion from minidisks can align the (initially isotropic) spins

➢ disk breaks at a critical angle $\theta_{crit} \sim \pi/2$ where alignment ceases [Nixon *et al.*, 2012; Tremaine & Davis, 2014; Nealon *et al.*, 2015; Nealon *et al.*, 2022]

- 1. κ governs the effect of the companion:
 - $\succ \kappa_i$ (initial κ) determines if spin begins at θ_{crit}
- 2. ω governs the relative contributions of inspiral and alignment: > Large $\omega \sim t_{inspiral}/t_{align}$ implies fast alignment
- 3. ω and κ depend on m_1 and m_2 so generally a binary has two of each $\succ \omega_1 \neq \omega_2$, and $\kappa_1 \neq \kappa_2$, i.e., equal masses imply $\omega_1 = \omega_2$, and $\kappa_1 = \kappa_2$
- 4. Reduce the full parameter space to 5 parameters: ω_1 , κ_1 , ω_2 , κ_2 , α , then relate them to the BH masses and spins.

The dimensionless viscosity '

It's more helpful to look at $\omega_1 + \omega_2$ and $\frac{\omega_1}{\omega_2}$

For larger total mass M, $\kappa_{i,1}, \kappa_{i,2}$ and $\omega_1 + \omega_2$ increase, implying more binaries reach critical angle and align quickly

As
$$q \rightarrow 1$$
, $\kappa_{i,1} = \kappa_{i,2}$ and $\frac{\omega_1}{\omega_2} \rightarrow 1$
implying both black holes align
quickly if $\omega_1 + \omega_2 \gtrsim 1$

For simplicity, assume here that $\kappa_{i,1} = \kappa_{i,2}$, and $\omega_1 = \omega_2 = 1$.

Larger κ_i increases the area of the black box

Small α is indistinguishable from gas-poor formation channel due to critical angle

 $\cos \theta_2$ α = 0.1 $\cos \theta_2$ α = 0.2 $\cos \theta_2$ α = 0.3

 $\kappa_i = 0.001$

 $\kappa_i = 0.1$

 $\kappa_i = 10$

Assume $\alpha = 0.2$ and $\kappa_i = 0.1$

For $\omega_1 + \omega_2 < 1$ binaries don't align

For $\omega_1 + \omega_2 \gtrsim 1$ binaries can align quickly

 $\frac{\omega_1}{\omega_2} < 1 \left(\frac{\omega_1}{\omega_2} > 1\right) \text{ causes}$ secondary (primary) to align quicker

$$M = 2 \times 10^7 \text{ M}_{\odot},$$

 $q = 0.8,$
 $\chi_1 = \chi_2 = 0.1,$
 $\alpha = 0.2$

$$M = 2 \times 10^7 \text{ M}_{\odot},$$

 $q = 0.8,$
 $\chi_1 = \chi_2 = 0.1,$
 $\alpha = 0.2$

~ 35% avoid alignment of both spins: \rightarrow these will exhibit

generic precession

All else held constant, vary the viscosity α :

- Most binaries have both
 spins misaligned for
 small α
- The four fractions converge to \sim 0.25 in large- α limit

In the GW-driven phase, the aligned effective spin $\chi_{eff}(q, \chi_1, \chi_2, \cos \theta_1, \cos \theta_2)$ is conserved.

 q, χ_1, χ_2 are constant, $\cos \theta_1, \cos \theta_2$ evolve.

BBHs that avoid alignment evolve on lines of constant χ_{eff} and exhibit generic spin precession.

The Bardeen-Petterson effect and its consequences for LISA observations of supermassive black-hole binary spin orientations

Nathan Steinle \mathbb{D}^1 , Davide Gerosa $\mathbb{D}^{2,3,1}$

 ¹School of Physics and Astronomy & Institute for Gravitational Wave Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
 ²Dipartimento di Fisica "G. Occhialini", Universitá degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
 ³INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy

29 March 2022

ABSTRACT Supermassive black holes can be driven to merger by many processes: dynamical

... Will publish soon!

If binaries begin with initially isotropic spin directions:

✓ A degeneracy exists between the spin orientations of BBHs in gas-poor hosts and of BBHs in gas-rich hosts with low viscosity α b/c of critical obliquity.

✓ If α is sufficiently high, the Bardeen-Petterson effect can align the spins to create subpopulations defined by alignment of one or both spins.

✓ These subpopulations will exhibit different spin precession in LISA band.

✓ If LISA measures BBHs with predominantly aligned spins, then this implies formation in a <u>high viscosity gas-rich host</u>!

Thank <u>you</u> for listening!

Vary mtotal and q

