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Many scenarios can be probed
using GW detectors:

we are interested in quasi-
monocromatic long-lived signals

[see OJP 2022 arXiv:2202.01088]
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Boson clouds: scalar bosons

% {Qsr e field bosons condensate, occupying the

same (quantum) state with huge

Superradlance condition: .

occupation numbers
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® The superradiance stops and the cloud
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The boson cloud signal characterization

e The BH-boson cloud system resembles the fine structure constant
hydrogen atom = gravitational atom > G Mgy my,
o= —
& h

. The Strain amplitUde decays as 5 x10™  Credit: D’Antonio et al. PRD 98, 103017 (2018)
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e The GW frequency is twice the field frequency
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We do not consider the effect due to transition levels



Searches with Earth-based interferometers

e Inthe Advanced LIGO-Virgo sensitivity band: 10-2000 Hz — 10-'4-10"" eV

e The first all-sky survey for persistent, quasi-monochromatic GW signals emitted by
ultralight scalar boson clouds around spinning BHs:

«All-sky search for gravitational wave emission from scalar boson clouds around spinning
black holes in LIGO O3 data» - R. Abbott et al. - PRD 105, 102001(2022)

e Frequency range 20-610 Hz.
e A small range around zero considered for the spin-up.
e 03 observing run of Advanced LIGO.

See also this directed search:
Isi et al. PRD 99, 084042 (2019)
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from time series (BSD) — map of the most Correct the peakmap for the considered sky
significant time-frequency peaks (multiple position (Doppler) — check important peaks in
FFT lengths, for robustness) the projection.

Check for coincidences in 2 detectors, follow up the most significant candidates:
® FrequencyHough - tuned for standard monochromatic signals
® Viterbi - more robust against deviations



Results: upper limits

e No potential candidate remains after the follow-up

— upper limits on the f
signal strain %

10'24%

Astrophysical implications: |
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Exclusion regions
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See also Palomba et al. PRL 123, 171101 (2019)

BH spin=0.9
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For each BH spin, distance and age

we exclude some BH-boson masses
combination

BH spin=0.5



Astrophysical reach of the search

maximum distance at which a given BH-boson cloud system, with a certain age,
is not emitting CWSs, as a function of the boson mass
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Results depend on the ensemble properties of the simulated BH population.



Galactic center environment DM or NSs?

e Very active and densely populated place.
e GeV excess measured by Fermi-LAT: DM annihilation or NS population?
e Semi-coherent method + spin-up range — boson cloud exclusion regions
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Primordial BHS and dark compact objects

e We are interested in certain combinations: 96 o
o Low chirp masses (although low strains) faw = 8/3( 3 ) §3v/3
o Inspiral phase in the detector band

0 PN (f=10H>) 0 PN (f=100Hz) 0 PN (f= 1000Hz) High spin-up
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Credit: Marc Andrés-Carcasona
Low spin-up
See also this search for CDO in the Solar System: « Standard CW methods fo+(t— to)fgw

C.J.Horowitz et al. Phys. Let. B 800, (2020), 135072 might be aIready useful 10



Constraints on PBH dark matter from all-sky NS su

All-sky search for continuous gravitational waves from
isolated neutron stars using LIGO-VIRGO O3 data -
arXiv:2201.00697

All-sky results can be re-interpreted:
merging rates and abundances of
planetary- and asteroid-mass PBHs.

Binary PBH: akin to a CW with positive
spin-down parameter (spin-up).

Current results cannot constrain the
nearby PBH population
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Direct detection of dark matter: vector bosons

® Direct detection of ultralight dark matter signals via their interactions with GW
interferometers (baryons/baryons minus leptons in the materials - fused silica)

® Treated as a “classical field”

® The interaction with the detector could cause a differential strain:

® Aspatial gradient is present — relative acceleration between /27 _ -

q ee 20pM Vo _o7 € 100 Hz
£ 2D _ 628 x1 gl
M 27c? e fo Stk <10‘23) ( fo

the objects due to the different field amplitude
® Additional effect due to the finite light travel time v {me) = ?V {p) (%) ~ 621 %10 (15553

® We call these dark photons, although the interaction model is a bit different (no small
mixing-induced coupling to EM currents here)

® No detection — limits on coupling ¢
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The signal

The time-dependent force acting on the test masses, produces a strain
oscillating at the same frequency and phase as the DM field

_ 2 Af 175 =
fo =mac?/(27th) > f_(J)[ = Ec_g ~294x1077 + Dopp|er effect (~’] e_8)
e e (Maxwell-Boltzmann spreading)
_— Dark matter field value
Hanford
Observatory
.\ The coherence time >> detectors separation
\\0’0 - 4 . .
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Methods

e Cross-correlation:

o Analyze detector data simultaneously,
look for identical signals in both
detectors.

o Fixed coherence time.

e Excess power (BSD):

o Analyze each detector’s data separately,
including Virgo.

o Coherence time as a function of the
boson mass considered.

o Look for strong, coincident candidates.

Abbott et al., PRD 105, 063030, 2022
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Yes..

Earth based interferometers can be used to look for dark matter candidates
We derive interesting constraints, although no detection has been claimed

..out

In boson clouds: self interaction? Second order effects (gravitons from excited energy
levels?)

Tensor case?
Ensemble of boson clouds signals?
PBHs during the inspiral phase?

Other ideas?
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