LEGENDA

- <u>https://chiodini.web.cern.ch/chiodini/JII/2L-PROVAAII-GC-HISTOS-UFO_PFlow_runII/index.html</u>
 - GABRIELE 33-08 UFO-Pflow
 - 30 regions: 15 SR and 15 ZCR (mc16a or full stat ??)
- Martino on /nfs/kloe/einstein4/HDBS/ReaderOutput/ reader_mc16a_VV_2lep_PFlow_UFO/fetch/
 - Latest EJS run 33-22 UFO-Pflow —— ONLY a few SR, 140ifb is misleading

LEGENDA

- <u>https://chiodini.web.cern.ch/chiodini/JII/2L-PROVAAII-GC-HISTOS-UFO_PFlow_runII/index.html</u>
 - GABRIELE 33-08 UFO-Pflow
 - 30 regions: 15 SR and 15 ZCR (mc16a or full stat ??)
- Stefania's plots are done from trees in /nfs/kloe/einstein4/HDBS/ReaderOutput/ reader_mc16a_VV_2lep_PFlow_UFO/fetch/ with MC16a only and corresponding data
 - Latest EJS run 33-22 UFO-Pflow ——— 30 regions: 15 SR and 15 ZCR, M>500 GeV
 - # of events are independent on the lower limit on M
 - # of events in red for Resolved regions are "pass_Res_... && (NOT(pass any merged ...))"

MIEI PLOT

hSig_X_resolved_ZZ_m

- Mie macro
 - /afs/<u>le.infn.it/user/s/spagnolo/atlas/</u> <u>Physics/DBLexot/CxAODReader2021/</u> <u>somePlotsMSC</u>
 - Root
 - .x initChains_33_22.C
 - makeMyQuickPlot2022.C
- Easytreeplotter from Reader
 - /afs/le.infn.it/user/s/spagnolo/atlas/Physics/DBLexot/ CxAODReader2021/CxAODReader_VVSemileptonic/ CxAODReader_VVSemileptonic/macros
 - runCxAODPlots_Syst.cxx (using makePlotsSSfromTree.cxx)

Resolved

ggF and VBF

Resolved

ggF

RESOLVED GGF ALL ZZ SR AND CR

Res_GGF_ZZ: SR tag, SR Untag, ZCR tag, ZCR Untag

RESOLVED GGF ALL ZZ SR AND CR

Res_GGF_ZZ: SR tag, SR Untag, ZCR tag, ZCR Untag

RESOLVED GGF ALL WZ SR AND CR

Res_GGF_WZ: SR, ZCR

Martino's plots are done with MC16a only and corresponding data

RESOLVED GGF ALL WZ SR AND CR

Res_GGF_WZ: SR, ZCR

Stefania's plots are done from trees with MC16a only and corresponding data

Resolved

VBF

RESOLVED VBF ALL ZZ AND WZ SR AND CR

Res_VBF: WZ SR, ZZ SR, WZ ZCR, ZZ ZCR

Martino's plots are done with MC16a only and corresponding data

RESOLVED VBF ALL ZZ AND WZ SR AND CR

Res_VBF: WZ SR, ZZ SR, WZ ZCR, ZZ ZCR

Merged ggF and VBF

Merged ggF

MERGED GGF ALL HP ZZ SR AND CR

MergHP_GGF_ZZ: SR tag, SR Untag, ZCR tag, ZCR Untag

Martino's plots are done with MC16a only and corresponding data

MERGED GGF ALL HP ZZ SR AND CR

MergHP_GGF_ZZ: SR tag, SR Untag, ZCR tag, ZCR Untag

MERGED GGF ALL HP WZ SR AND CR

MergHP_GGF_WZ: SR, ZCR

Martino's plots are done with MC16a only and corresponding data

MERGED GGF ALL HP WZ SR AND CR

MergHP_GGF_WZ: SR, ZCR

Stefania's plots are done from trees with MC16a only and corresponding data

3000

m_{IIJ} [GeV]

3500

MERGED GGF ALL LP ZZ SR AND CR

MergLP_GGF_ZZ: SR tag, SR Untag, ZCR tag, ZCR Untag

Martino's plots are done with MC16a only and corresponding data

MERGED GGF ALL LP ZZ SR AND CR

MergLP_GGF_ZZ: SR tag, SR Untag, ZCR tag, ZCR Untag

Stefania's plots are done from trees with MC16a only and corresponding data

MERGED GGF ALL LP WZ SR AND CR

MergLP_GGF_WZ: SR, ZCR

Martino's plots are done with MC16a only and corresponding data

MERGED GGF ALL LP WZ SR AND CR

MergLP_GGF_WZ: SR, ZCR

Stefania's plots are done from trees with MC16a only and corresponding data

Merged VBF

23

MERGED VBF ALL HP ZZ AND WZ SR AND CR

MergHP_VBF: WZ SR, ZZ SR, WZ ZCR, ZZ ZCR

Martino's plots are done with MC16a only and corresponding data

MERGED VBF ALL HP ZZ AND WZ SR AND CR

MergHP_VBF: WZ SR, ZZ SR, WZ ZCR, ZZ ZCR

Stefania's plots are done from trees with MC16a only and corresponding data

MERGED VBF ALL LP ZZ AND WZ SR AND CR

MergLP_VBF: WZ SR, ZZ SR, WZ ZCR, ZZ ZCR

Martino's plots are done with MC16a only and corresponding data

MERGED VBF ALL LP ZZ AND WZ SR AND CR

MergLP_VBF: WZ SR, ZZ SR, WZ ZCR, ZZ ZCR

Stefania's plots are done from trees with MC16a only and corresponding data

5.7 Strategy to the SR orthogonalization

In each of 0-, 1- and 2-lepton channel, both in VBF and DY/ggF categories, for events which satisfy both the resolved and the merged analyses the following is used to classify events. When an event fails a given selection, it is tested on the next according to its priority; this is termed "recycling". Only upon failing all selections is an event discarded. The order of selections is as follows:

- VBF categories
 - Merged high-purity signal region(s)
 - Merged low-purity signal region(s)
 - Resolved signal region(s)
 - Merged high-purity control region(s)
 - Merged low-purity control region(s)
 - Resolved control region(s)
- ggF/DY categories
 - Merged high-purity signal region(s)
 - Merged low-purity signal region(s)
 - Resolved signal region(s)
 - Merged high-purity control region(s)
 - Merged low-purity control region(s)
 - Resolved control region(s)

The order of "recycling" is studied in the previous analysis^[55] and the way to maximize the overall sensitivity is chosen.

The phase space considered in this search where the recycling strategy is most important is roughly in the transition region from $500 \le m_X \le 800$ GeV. Above and below these signal masses hadronic decays of the $Z \rightarrow q\bar{q}/W \rightarrow q\bar{q}$ are reconstructed primarily as either merged or resolved, respectively. The prioritization was studied in the previous analysis and we found this "merged-then-resolved" scheme can maximize the sensitivity in the intermediate mass region.

FROM ATL-COM-PHYS-2018-1549

MC16A

EXPECTED ACCORDING HDBS-2018-10 MARTINO'S HISTOGRAMS FROM READER

- Cut is = weight*(Pass_MergHP_GGF_ZZ_Untag_SR == 1)
- Zjet events = 23480 1134.12
- DiBoson events = 14208 163.574
- ttbar events = 158 7.04605
- single t events = 14 1.48344
- DATA events = 1251 1251 837 951
- Signal events = 119951 53.2062
- Cut is = weight*(Pass_MergHP_GGF_ZZ_Tag_SR == 1)
- Zjet events = 522 12.5912
- DiBoson events = 1050 7.33398
- ttbar events = 12 0.538646
- single t events = 0 0
- DATA events = 18 18 11 24.3
- Signal events = 14739 6.91269

 Cut is = weight*(Pass_MergLP_GGF_ZZ_Untag_SR == 1)

- Zjet events = 92639 3508.96
- DiBoson events = 8554 124.736
- ttbar events = 308 12.9344
- single t events = 6 1.58891
- DATA events = 3694 3694 2433 1578
- Signal events = 44944 19.267
- Cut is = weight*(Pass_MergLP_GGF_ZZ_Tag_SR == 1)
- Zjet events = 1330 28.6997
- DiBoson events = 597 4.43183
- ttbar events = 20 0.740925
- single t events = 1 0.394047
- DATA events = 43 43 29 36.5
- Signal events = 5418 2.49398

FROM HDBS-2018-10/TAB_04.PNG

<u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-10/</u> <u>tab_04.png</u>

Tab 58 of ATL-COM-PHYS-2018-1549

Channel	$V \rightarrow qq$	Signal]	Backgrou	nd estimates							Data
Chamber	recon.	regions	W+jets	W+jets		Z+jets		tī		Diboso	n	Single-t		Multijet	Total		Duu
								VBF cate	gory								
	Merged	HP	0		87	±	6	0.081 ±	0.009	9.6 ±	1.2	0		-	97 ±	6	101
	Weigeu	LP	0.133 ±	0.011	170	±	8	0.85 ±	0.07	9.9 ±	1.2	0.43 ±	0.07	-	$181 \pm$	8	162
	Resolved		0.272 ±	0.012	1566	±	29	17.0 ±	0.7	72 ±	10	$0.48 \pm$	0.32	-	$1656 \pm$	31	1685
								ggF/DY car	tegory								
2-lepton (ZZ)		Tag	0.0135 ±	0.0043	85	±	6	0.283 ±	0.035	21.1 ±	2.3	0.34 ±	0.05	-	107 ±	7	94
	Margad	Untag	0.772 ±	0.010	3300	±	40	4.27 ±	0.08	361 ±	32	$0.58 \pm$	0.11	-	$3670 \pm$	50	3671
	Meigeu	Tag	0.0135 ±	0.0043	138	±	8	$0.313 \pm$	0.034	$12.8 \pm$	1.4	$0.30 \pm$	0.04	-	$152 \pm$	8	141
		Untag	2.341 ±	0.017	5920	±	50	10.16 ±	0.16	278 ±	26	$2.03 \pm$	0.29	-	$6220 \pm$	60	6095
	Resolved	Tag	-		1323	±	26	110 ±	10	159 ±	12	4.7 ±	0.8	-	$1600 \pm$	30	1583
		Untag	4.681 ±	0.026	42 750	± 1	60	110.6 ±	1.5	1800 ±	100	13.4 ±	2.0	-	$44650\pm$	190	44 604

Postfit yield in the WW/ZZ signal regions from a simultaneous fit in all WW/ZZ regions.

ZZ signal regions

FROM HDBS-2018-10/TAB_04.PNG

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-10/ tab_04.png

-	-	-							C		
Channel	$V \rightarrow qq$	Si	gnal			Data	Total	Data	Total	Data	
	recon.	reg	gions	Total			 22.22	33-22		33-22	
					VBF	:	33-22		1 33-22 1		
	Merged	I	HP	97 ±	6	101	140	127	140	127	630 Mer ZZ VBF SR 475
	Wieigeu	1	LP	$181 \pm$	8	162	490	348	490	348	
	Resolved			$1656 \pm$	31	1685	321	278	321	278	321 Res ZZ VBF SR 278
			ggF/DY		ΟY			1			
2-lepton (ZZ)		нр	Tag	107 ±	7	94	76	75	76	75	
	Merged		Untag	$3670 \pm$	50	3671	4801	4611	4801	4611	20818 Mer 77 GGE SR 20333
	Mergeu	ID	Tag	152 ±	8	141	141	175	141	175	
		LF	Untag	$6220 \pm$	60	6095	15452	15000	15452	15000	
	Resolved	Tag		$1600 \pm$	30	1583	1655	1915	1668	1930	18135 Doc 77 CCE SD 10787
		Unta	g	$44650\pm$	190	44 604	45905	47267	46467	47857	40100 NES ZZ GGF ON 49707

Tab 58 of ATL-COM-PHYS-2018-1549

Postfit yield in the WW/ZZ signal regions from a simultaneous fit in all WW/ZZ regions.

Without enforcing orthogonality

ZZ signal regions

FROM HDBS-2018-10

- https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-10/ tab_04.png
 - Tab 58 of ATL-COM-PHYS-2018-1549

Region	Normalization
W+jets GGF Merg HP	0.934 ± 0.00788
W+jets GGF Merg LP	0.886 ± 0.00455
W+jets GGF Res	1.02 ± 0.00562
Z+jets GGF Merg HP	0.963 ± 0.0118
Z+jets GGF Merg LP	0.889 ± 0.00714
Z+jets GGF Res	1.06 ± 0.00361
tt GGF Merg HP	0.942 ± 0.019
tt GGF Merg LP	0.908 ± 0.00162
$t\bar{t}$ GGF Res	0.949 ± 0.0146

Table 59: Fitted values of background normalization factors in the GGF WWZZ region.

Normalization
0.934 ± 0.0599
0.905 ± 0.0369
0.929 ± 0.0195
0.909 ± 0.0605
0.85 ± 0.0378
0.928 ± 0.017
0.847 ± 0.0644
0.767 ± 0.0675
0.973 ± 0.0361

Table 60: Fitted values of background normalization factors in the VBF WWZZ region.

ZZ signal regions - bkg scale factors from CR

FROM HDBS-2018-10.

Tab 66 of

ATL-COM-PHYS-2018-1549

ZZ G	GF Untagged ZCR		Merged HP		Merged Ll	P	Resolve	ed		
Dibos	on		206.58 ± 21.18	;	392.37 ± 39	.55	1119.49 ±	83.8	\$5	
Single	e-top		1.21 ± 0.28		2.25 ± 0.4	8	21.11 ± 4	21.11 ± 4.04		
tī			7.43 ± 0.15		19.29 ± 0.3	181.46 ±	181.46 ± 2.79			
W+jets			1.51 ± 0.01		8.25 ± 0.0	10.86 ± 0).06			
Z+jets	5	5	6647.09 ± 69.24	4	13715.71 ± 11	82747.66 ±	281	.74		
Total		5	5863.83 ± 72.4	1	14137.85 ± 11	7.13	84080.58 ±	294	.00	
Data			5876.00		14236.00		84128.0	00		
Z	ZZ GGF Tagged ZCI		Merged HP)	Merged LF	>	Resolved			
D	Diboson		5.17 ± 0.69)	9.94 ± 1.24		55.55 ± 6.54			
S	Single-top		0.12 ± 0.02		0.19 ± 0.03		10.18 ± 2.71			
tī	ī		0.37 ± 0.04	ŀ	1.48 ± 0.15	5	203.02 ± 20.0	8		
И	V+jets		0.04 ± 0.00		0.32 ± 0.03		0.14 ± 0.01			
Z	Z+jets		154.35 ± 10.7		257.94 ± 13.74		2495.09 ± 50.08			
Т	otal		160.05 ± 10.77		269.87 ± 13.80		2763.98 ± 54.42			
D	Data		171.00		280.00		2788.00			
	ZZ VBF ZCR]	Merged HP		Merged LP		Resolved			
	Diboson	(6.03 ± 1.25]	13.60 ± 2.65	74	$.72 \pm 13.10$			
	Single-top		0.00 ± 0.00		0.63 ± 0.12	5	$.34 \pm 1.47$			
	$t\bar{t}$		0.48 ± 0.04		1.23 ± 0.11	47	7.00 ± 1.85			
	W+jets		0.03 ± 0.00		0.19 ± 0.01	0	0.26 ± 0.01			
	Z+jets		157.60 ± 10.34		383.59 ± 16.59		3677.06 ± 57.53			
	Total	16	164.13 ± 10.41		99.23 ± 16.80	3804.38 ± 59.05				
	Data		154.00		404.00	3777.00				

ZCR

Table 66: Postfit yield in the $\ell\ell qq$ WWZZ ZCR in the (top) GGF Untagged, (middle) GGF Tagged and (bottom) VBF regions from a simultaneous fit in all WWZZ regions

ZZ selection ZCR yield

FROM HDBS-2018-10.

ZCR

Tab 66 of ATL-COM-PHYS-2018-1549

ZZ GGF Untagged ZCR Merged HP Merged LP Resolved 392.37 ± 39.55 1119.49 ± 83.85 Diboson 206.58 ± 21.18 Single-top 1.21 ± 0.28 2.25 ± 0.48 21.11 ± 4.04 19.29 ± 0.34 181.46 ± 2.79 tī 7.43 ± 0.15 W+jets 10.86 ± 0.06 8.25 ± 0.04 1.51 ± 0.01 Z+jets 5647.09 ± 69.24 13715.71 ± 110.25 82747.66 ± 281.74 84080.58 ± 294.00 Total 5863.83 ± 72.41 14137.85 ± 117.13 5876.00 14236.00 Data 84128.00 ZZ GGF Tagged ZCR Merged HP Merged LP Resolved 5.17 ± 0.69 9.94 ± 1.24 55.55 ± 6.54 Diboson Single-top 0.12 ± 0.02 0.19 ± 0.03 10.18 ± 2.71 0.37 ± 0.04 1.48 ± 0.15 203.02 ± 20.08 tī 0.32 ± 0.03 0.04 ± 0.00 0.14 ± 0.01 W+jets 154.35 ± 10.74 257.94 ± 13.74 2495.09 ± 50.08 Z+jets 269.87 ± 13.80 160.05 ± 10.77 2763.98 ± 54.42 Total 171.00 280.00 2788.00 Data Merged HP ZZ VBF ZCR Merged LP Resolved 6.03 ± 1.25 13.60 ± 2.65 74.72 ± 13.10 Diboson Single-top 0.00 ± 0.00 0.63 ± 0.12 5.34 ± 1.47 0.48 ± 0.04 1.23 ± 0.11 47.00 ± 1.85 tī W+jets 0.03 ± 0.00 0.19 ± 0.01 0.26 ± 0.01 3677.06 ± 57.53 Z+jets 157.60 ± 10.34 383.59 ± 16.59 Total 164.13 ± 10.41 399.23 ± 16.80 3804.38 ± 59.05 154.00 3777.00 Data 404.00

91502 Res ZZ GGF ZCR 95003 3809 Res ZZ VBF ZCR 3777 44832 Mer ZZ GGF ZCR 43753 1365 Mer ZZ VBF ZCR 1018

10 1	6061 6211 16628	27155 25844 27826	87075 90076 88721	Data 33-22
	16782	26458 184	91617 2746	Total Bkg 33-22
	272 192 273	238 186 240	3333 2781 3386	Data 33-22
	522 388	809 607	505 436	Total Bkg 33-22 Data
m)	538 397	827 621	533 459	33-22

Table 66: Postfit yield in the $\ell\ell qq$ WWZZ ZCR in the (top) GGF Untagged, (middle) GGF Tagged and (bottom) VBF regions from a simultaneous fit in all WWZZ regions

ZZ selection ZCR yield

Same counters as for WZ ZCR Without enforcing orthogonality

DA CONFRONTARE CON I PANDADATAFRAME

1995 2294 630 Mer ZZ VBF SR 475 1365 Mer ZZ VBF ZCR 1018

4**|**30 ~900 321 Res ZZ VBF SR 278 3809 Res ZZ VBF ZCR 3777

65650 20818 Mer ZZ GGF SR 20333 44832 Mer ZZ GGF ZCR 43753 **64086**

I 39637 ~163000 48135 Res ZZ GGF SR 49787 91502 Res ZZ GGF ZCR 95003

144790

Dati

1493

4055

MC MC from Panda DF

35

FROM HDBS-2018-10/TABAUX_02.PNG

- <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-10/</u> <u>tabaux_02.png</u> (not well formatted)
 - Original in <u>ATL-COM-PHYS-2018-1549</u>, tab.49
 - Postfit yield in the WZ signal regions from a simultaneous fit in all WZ regions.

Channel	$V \rightarrow qq$	Signal			Bac	ckground estimate	es			Data
	recon.	regions	W + jets	Z + jets	tī	tī Diboson		Multi-jet	Total	
					105					
VBF category										
	Merged	HP	0	101 ± 7	0.22 ± 0.02	8.92 ± 1.92	0	-	110 ± 7	118
		LP	0.31 ± 0.02	247 ± 11	0.76 ± 0.07	10.6 ± 2	0.27 ± 0.06	-	259 ± 11	243
2-lepton	Resolved		0.19 ± 0.01	1714 ± 32	12.7 ± 0.6	56.8 ± 9.6	0.84 ± 0.3	-	1784 ± 33	1831
					ggF/DY	category				
	Merged	HP	0.73 ± 0.01	3788 ± 49	5.16 ± 0.1	445 ± 43	1.38 ± 0.23	-	4240 ± 66	4197
		LP	2.98 ± 0.02	8751 ± 71	13.6 ± 0.2	388 ± 37	2.89 ± 0.51	-	9159 ± 80	9088
	Resolved		8.57 ± 0.06	50005 ± 184	116 ± 2	1705 ± 133	13.7 ± 2.2	-	51848 ± 227	51655

WZ signal regions

FROM HDBS-2018-10/TABAUX_02.PNG

- https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-10/ tabaux_02.png (not well formatted)
 - Original in <u>ATL-COM-PHYS-2018-1549</u>, tab.49
 - Postfit yield in the *WZ* signal regions from a simultaneous fit in all *WZ* regions.

Channel	$V \rightarrow qq$ recon.	Signal regions	Total	Data	Total Bkg 33-22	Data 33-22	Total Bkg 33-22	Data 33-22
2-lepton	Merged Resolved	HP LP	110 ± 7 259 ± 11 1784 ± 33	118 243 1831	160 647 406	155 470 338	160 647 429	155 470 357
	Merged Resolved	HP LP	4240 ± 66 9159 ± 80 51848 ± 227	4197 9088 51655	5554 21263 61944	5235 20729 63570	5554 21263 63040	5235 20729 64563

WZ signal regions

Without enforcing orthogonality

FROM HDBS-2018-10/TABAUX_02.PNG

- https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-10/ tabaux_02.png (not well formatted)
 - Original in <u>ATL-COM-PHYS-2018-1549</u>, tab.49
 - Postfit yield in the WZ signal regions from a simultaneous fit in all WZ regions.

Region	Normalization
W+jets GGF Merg HP Tag	0.92 ± 0.114
W+jets GGF Merg HP Untag	0.95 ± 0.00753
W+jets GGF Merg LP Tag	0.915 ± 0.0694
W+jets GGF Merg LP Untag	0.879 ± 0.00462
W+jets GGF Res Tag	1.21 ± 0.0859
W+jets GGF Res Untag	1.01 ± 0.0061
Z+jets GGF Merg HP	0.962 ± 0.0118
Z+jets GGF Merg LP	0.893 ± 0.00698
Z+jets GGF Res	1.06 ± 0.0035
$t\bar{t}$ GGF Merg HP Tag	0.955 ± 0.0272
tt GGF Merg HP Untag	0.896 ± 0.0147
tī GGF Merg LP Tag	0.976 ± 0.0329
tt GGF Merg LP Untag	0.896 ± 0.0128
$t\bar{t}$ GGF Res Tag	1.0 ± 0.0102
tī GGF Res Untag	0.968 ± 0.0169

Region	Normalization
W+jets VBF Merg HP	0.911 ± 0.0618
W+jets VBF Merg LP	0.915 ± 0.0398
W+jets VBF Res	0.945 ± 0.0211
Z+jets VBF Merg HP	0.942 ± 0.0593
Z+jets VBF Merg LP	0.879 ± 0.0366
Z+jets VBF Res	0.936 ± 0.0166
tt VBF Merg HP	0.931 ± 0.0665
tt VBF Merg LP	0.693 ± 0.0643
tī VBF Res	0.991 ± 0.0404

Table 51: Fitted values of background normalization factors in the VBF WZ region.

Table 50: Fitted values of background normalization factors in the GGF WZ region.

WZ signal regions - bkg scale factors from CR

FROM HDBS-2018-10. ZCR

- Tab 57 of
 - ATL-COM-PHYS-2018-1549

WZ GGF ZCR		Merged HP	Merged LP	Resolved
Diboson	2	12.73 ± 21.22	383.79 ± 37.93	1095.52 ± 84.04
Single-top		1.20 ± 0.25	2.58 ± 0.48	20.25 ± 3.36
tī	\bar{t} 7.67 ± 0.13		20.41 ± 0.29	181.37 ± 3.17
W+jets		1.53 ± 0.01	7.79 ± 0.04	10.43 ± 0.06
Z+jets	59	982.12 ± 73.54	13013.78 ± 101.77	82819.46 ± 273.03
Total	fotal 6205.25 ± 76.54		13428.35 ± 108.61	84127.03 ± 285.71
Data	Data		13531.00	84316.00
WZ VBF Z	CR	Merged HP	Merged LP	Resolved
Diboson		5.08 ± 1.05	10.41 ± 2.08	61.41 ± 10.05
Single-top		0.00 ± 0.00	0.59 ± 0.12	2.75 ± 0.80
tī	tī		1.09 ± 0.10	28.92 ± 1.23
W+jets	W+jets		0.20 ± 0.01	0.32 ± 0.01
Z+jets	Z+jets		368.89 ± 15.12	3635.61 ± 55.51
Total	Total		381.18 ± 15.27	3729.02 ± 56.44
Data		163.00	374.00	3685.00

Table 57: Postfit yield in the $\ell\ell qq WZ CR$ in the (top) GGF and (bottom) VBF regions from a simultaneous fit in all WZ regions

WZ selection ZCR yield

FROM HDBS-2018-10. ZCR

Tab 57 of

WZ regions

ATL-COM-PHYS-2018-1549

И	Z GGF ZCR	Merged HP	Merged LP	Resolved						
D	Diboson	212.73 ± 21.22	383.79 ± 37.93	1095.52 ± 84.04						
S	ingle-top	1.20 ± 0.25	2.58 ± 0.48	20.25 ± 3.36						
tī	F	7.67 ± 0.13	20.41 ± 0.29	181.37 ± 3.17						
И	V+jets	1.53 ± 0.01	7.79 ± 0.04	10.43 ± 0.06						Total
Z	Z+jets	5982.12 ± 73.54	13013.78 ± 101.77	82819.46 ± 273.03	3					ВКВ
Т	otal	6205.25 ± 76.54	13428.35 ± 108.61	84127.03 ± 285.71	l 162	251	273	39	87674	33-22
D	Data	6210.00	13531.00	84316.00	164	16483 2		32	90788	Data
	WZ VBF ZC	R Merged HP	Merged LP	Resolved	_	17043		27867	88170	33-22
	Diboson	5.08 ± 1.05	10.41 ± 2.08	61.41 ± 10.05		17211		26594	91341	
	Single-top	0.00 ± 0.00	0.59 ± 0.12	2.75 ± 0.80						
	tī	0.57 ± 0.04	1.09 ± 0.10	28.92 ± 1.23						
	W+jets	0.02 ± 0.00	0.20 ± 0.01	0.32 ± 0.01						Total
	Z+jets	171.13 ± 10.56	5 368.89 ± 15.12	3635.61 ± 55.51						BKg
	Total	176.80 ± 10.62	2 381.18 ± 15.27	3729.02 ± 56.44	522		809	4	88	33-22
	Data	163.00	374.00	3685.00	388		607	4	15	Data
57: Postfit yie	eld in the $\ell\ell q q V$	$VZ \ CR$ in the (top) Q	GGF and (bottom) VE	3F regions from a sim	ultaneou	538 s fit <mark>397</mark>		827 621	497 424	33-22
regions										

WZ selection ZCR yield