

Giorgio Chiarelli INFN Sezione di Pisa

FCCP 2022 Capri, 21/9/2022

Motivation for a precision measurement

Electroweak gauge sector constrained by known parameters:

At tree level linked to M_W : $M^2_W = \pi \alpha_{em} / \sqrt{2} G_F \sin^2 \theta_W$ $\cos \theta_W = M_W / M_Z$

Can be affected by new particles

Starting point:

(CDF, PRL 108 (2012) 151803; Phys. Rev. D 89 (2014) 7, 072003) Total uncertainty of 19 MeV on W boson mass

	electrons	muons	common
W statistics	19	16	0
Lepton energy scale	10	7	5
Lepton resolution	4	1	0
Recoil energy scale	5	5	5
Recoil energy resolution	7	7	7
Selection bias	0	0	0
Lepton removal	3	2	2
Backgrounds	4	3	0
pT(W) model	3	3	3
Parton dist. Functions	10	10	10
QED rad. Corrections	4	4	4
Total	23	26	15

Systematic uncertainties shown in green: statistics-limited by control data samples

If you are in a hurry CDF M_W vs m_{top}

4

Updates wrt 2.2 fb-1

Method or technique	impact	section of paper
Detailed treatment of parton distribution functions	+3.5 MeV	IV A
Resolved beam-constraining bias in CDF reconstruction	$+10 { m MeV}$	VIC
Improved COT alignment and drift model [65]	uniformity	VI
Improved modeling of calorimeter tower resolution	uniformity	III
Temporal uniformity calibration of CEM towers	uniformity	VII A
Lepton removal procedure corrected for luminosity	uniformity	VIII A
Higher-order calculation of QED radiation in J/ψ and Υ decay	rs accuracy	VI A & B
Modeling kurtosis of hadronic recoil energy resolution	accuracy	VIII B 2
Improved modeling of hadronic recoil angular resolution	accuracy	VIIIB3
Modeling dijet contribution to recoil resolution	accuracy	VIIIB4
Explicit luminosity matching of pileup	accuracy	VIII B 5
Modeling kurtosis of pileup resolution	accuracy	VIII B 5
Theory model of p_T^W/p_T^Z spectrum ratio	accuracy	IV B
Constraint from p_T^W data spectrum	robustness	VIII B 6
Cross-check of p_T^Z tuning	robustness	IV B

First two are additive to previous measurement

5

W Boson Production at the Tevatron

information, can be measured precisely (achieved 0.004%)

Initial state QCD radiation is O(10 GeV), measure as soft 'hadronic recoil' in calorimeter (calibrated to ~0.2%) dilutes W mass information, fortunately $p_T(W) \ll M_W$

Select W and Z bosons with central ($|\eta|$ <1) leptons

W event selection

Select events with: high P_T leptons, small hadron recoil, maximize W mass info and reduce bck:

- Inclusive lepton triggers:
 - Loose lepton track and muon stub, calorimetr cluster Lepton P_T>18 GeV
- Offline selection:
 - \geq Electron cluster, E_T>30 GeV, track P_T>18 GeV
 - ➢ Muon track P_T>30 GeV
 - Loose lepton ID to minimize bias
- > W selection: P_{T_1} >30 GeV, P_{T_v} >30 GeV, $|u_T|$ <15 GeV
- > 60<M_T<100</p>
- Reject events with 2nd charged lepton (Z candidates)

Data Samples & Strategy

Integrated luminosity (Feb-2002-Sept.2011)

- Electron and muons: 8.8 fb-1
- Identical running conditions in both channels
- Event selection provides rather clean samples
 - Mis-id bckg: ~0.5%
- Analysis Strategy aims:
 - Robustness:
 - constrain the same parameter in as many ways as possible
 - Precision:
 - Combine independent, yet consistent, measurements
 - Minimize bias:
 - Blinded analysis of Z and W samples

Sample	Candidates
W→electron	1811799
W→muons	2424486
Z→electrons	66180
Z→muons	238534

 e/μ ratio scales with acceptance

Energy scale drives W mass

Tracker Calibration

- alignment of the COT (2,520 cells; 30,240 sense wires) using cosmic rays
- ➢ COT momentum scale and tracker non-linearity constrained using J/ψ→µµ and Y→µµ mass fits
- ightarrow Confirmed using Z \rightarrow µµ mass fit
- EM Calorimeter Calibration
 - COT momentum scale transferred to EM calorimeter using a fit to the peak of the E/p spectrum, around E/p~1
 - \succ Calorimeter energy scale confirmed using Z \rightarrow ee mass fit
- Tracker and EM Calorimeter resolutions
- Hadronic recoil modeling

Fit COT hits on both sides, simultaneously to a single helix: NIMA 506, 110 (2003)

Checks of alignment

Giorgio Chiarelli

Cross check of COT alignment

Alignment with cosmics remove most deformations degrees of freedom, but some remains

- Final cross-checks and correction using beam-constrained track curvature based on difference of <E/p> for electrons and positrons
- Final smooth correction to curvature as a function of polar and azimuthl angle: q/p_{T} (measured) =

$$+ c_1 q/p_T + c_2 (q/p_T)^2$$

c₁: momentum scale

 c_0

FIG. S6: Difference in $\langle E/p \rangle$ between positrons and electrons as a function of $\cot \theta$, and its linear fit. The curvature corrections given in Eq. (4) have been applied.

Signal generation and simulation

All signals generated using a custom Monte Carlo

- Generate fine-binned templates as a function of the fitting variable
- Perform binned maximum-likelihood fit to data

Custom Monte Carlo to make high-statistics template

Full understanding of the detector, use of first principles

We fit 6 kinematic variables:

Pt of the charged lepton, Pt of the neutrino, transverse mass using both electrons and muons

Generator Level

RESBOS provides generator level input for W and Z:

- Triple differential cross sections, and Pt dependent double-differential decay angular distribution
- Reliable Pt spectrum of the boson, and tunable spectrum in the low-PT part

QED effects:

Multiple radiative photons generated with PHOTOS

Extensive comparison with HORACE (C.M. Carloni-Calame, G. Montagna, O. Nicrosini, A. Vicini)

Uncertainties in QED calculations

Extensive studies on uncertainties coming from:

- Leading log approximation
- Multi-photon calculation
- Higher order soft and virtual corrections
- Electron-positron pair creation
- >QED/QCD interference
- Dependence on EWK parameters scheme

Overall systematic uncertainty due to QED radiation:

➤ 3 MeV on W mass

Constraining boson P_T

Fit non-perturbative parameter g_2 and α_s QCD coupling in Resbos to $P_T(II)$ spectra

≻∆M_w=1.8 MeV

Check of P_T spectrum

New: use opening angle between leptons to check the $P_{T}(II)$ spectrum modeling, the variable is:

$$\phi_{\eta}^* = \tan\left(\frac{\pi - \Delta \phi^{\ell \ell}}{2}\right) \operatorname{sech}\left(\frac{\eta^- - \eta^+}{2}\right)$$

Acceptance effect modeled in simulation

Use of Custom MC simulation

- We use a complete detector simulation of all quantities used in measurements:
 - First principles simulation of tracking
 - Tracks and photons propagated through a detailed 3D lookup table of material in silicon detector and COT. At each material interactions calculate:
 - Ionization losses (including Landau fluctuations), bremstrahhlung photons down to 400 KeV
 - Simulate photon conversion and Compton scattering
 - Propagate
 - Multiple scattering, including non-gaussian tail
- Material lookup table:
 - Starting from detailed construction data
 - > Tuned with conversion electrons

Tracking momentum scale

Set using J/ $\Psi \rightarrow \mu\mu$, $Y \rightarrow \mu\mu$ resonances, and $Z \rightarrow \mu\mu$

Extracted by J/Ψ in bins of 1/P_T and extrapolated to 0 curvature

Using Upsilon

- $\rightarrow \mu \mu$ provides
 - > Momentum scale at larger P_T
 - Validation of beam-constrained (Y produced prompt)
 - Cross check of Beam-Constrained vs Non-BC

We resolved previous discrepancy of BC vs NBC result

And removed related systematics

Non beamconstrained Y→µµ mass fit

Final list of tracking systematics

Calorimeter

Simulation for e/γ : Distributions of energy response obtained by GEANT4 detailed simulation, tuned on data

- Leakage into hadronic calorimeter
- Absorption in magnet coil
- > Dependence on incident angle and E_{T}
- Energy-dependent gain (non-linearity) parameterized and fit from data

Material budget

 \succ From E/p tail excellent match after scaling of X₀

Z mass

Perform blind check of Z mass using E/p calibration \geq Consistent with PDG (91188 MeV) within 0.5 σ $M_{Z} = 91194.3 \pm 13.8_{stat} \pm 6.5_{calorimeter} \pm 2.3_{momentum} \pm 3.1_{QED} \pm 0.8_{alignmen}$ MeV \succ Combine E/p calibration with Z \rightarrow ee mass for best accuracy ×10° Events / 0.5 GeV χ^{2} /dof = 46 / 38 Data $P_{\gamma^2} = 16 \%$ 4 Simulation P_{κs} = 93 % 2 Fig. 3 90 80 100 110 M(ee) (GeV) m_{ee} (Ģ⊜V) **Giorgio Chiarelli**

Checks using Z electrons

Electrons	Calorimeter	Track
E/p < 1.1 only	91190.9 ± 19.7	91215.2 ± 22.4
E/p > 1.1 and $E/p < 1.1$	91201.1 ± 21.5	91259.9 ± 39.0
E/p > 1.1 only	91184.5 ± 46.4	91167.7 ± 109.9

Lepton resolutions

Tracking resolution parameterized in the custom simulation by

- Radius-dependent drift chamber hit resolution σ_h~(150±1 stat) μm
- > Beamspot size σ_{b} = (36.0 ± 0.5stat) µm
- ➤ Tuned on the widths of the Z→µµ (beam-constrained) and Y→µµ (both beam constrained and non-beam constrained) mass peaks
- ≻ ∆M_w (muons): 0.3 MeV

Electron cluster resolution parameterized in the custom simulation by

- > σ =12.6% / \sqrt{ET} (sampling term)
- constant term κ = (0.73 ± 0.02stat) %
- ➤ Tuned on the widths of the E/p peak and the Z → ee peak (selecting radiative electrons)

≻ ∆M_w (electrons): 0.9 MeV Giorgio Chiarelli

Recoil model

Exploit similarity in production and decay of W and Z

Detector response for recoil tuned using P_T balance in Z \rightarrow II decays

Transverse momentum of Hadronic recoil (*u*), calculated as 2-vector sum over calorimeter towers

Additional constraint from P_{TW} in W boson events

NEW: In addition to the $P_T(Z)$ data constrain on the boson P_T spectrum,

- the ratio of P_T(W) / P_T(Z) spectra is also constrained from P_T(W) data
- DYqT code: tripledifferential cross section calculation at NNLO-QCD used to model scale variation of ratio
- P_T(W) data is used as constraint on ratio model
- correlation with hadronic recoil model is taken into account

Parton distribution functions

- Affect W boson kinematic line-shapes through acceptance cuts
- We use NNPDF3.1 as the default NNLO PDFs
- > Use ensemble of 25 '*uncertainty*' PDFs \Rightarrow 3.9 MeV
 - Represent variations of eigenvectors in the PDF parameter space
 - \succ compute δM_W contribution from each error PDF
- Central values from NNLO PDF sets CT18, MMHT2014 and NNPDF3.1 agree within 2.1 MeV of their midpoint
- As an additional check, central values from NLO PDF sets ABMP16, CJ15, MMHT2014 and NNPDF3.1 agree within 3 MeV of their midpoint
- Missing higher-order QCD effects estimated to be 0.4 MeV
 - varying the factorization and renormalization scales
 - comparing two event generators with different resummation and nonperturbative schemes.
- Early May, Resbos Authors (C.P. Yuan et al.) published

https://arxiv.org/pdf/2205.02788.pdf

In this paper they compare our procedure (Resbos1+constraint from data) with Resbos2 (higher order), and confirm our uncertainty estimate

Backgrounds

Muon channel

	Fraction	$\delta M_W~({ m MeV})$		
Source	(%)	m_T fit	p_T^μ fit	p_T^{ν} fit
$Z/\gamma^* \to \mu\mu$	7.37 ± 0.10	1.6 (0.7)	3.6(0.3)	$0.1 \ (1.5)$
$W \to \tau \nu$	0.880 ± 0.004	0.1 (0.0)	0.1 (0.0)	0.1 (0.0)
Hadronic jets	0.01 ± 0.04	0.1 (0.8)	-0.6(0.8)	2.4~(0.5)
Decays in flight	0.20 ± 0.14	1.3(3.1)	1.3 (5.0)	-5.2(3.2)
Cosmic rays	0.01 ± 0.01	0.3 (0.0)	0.5~(0.0)	0.3(0.3)
Total	8.47 ± 0.18	2.1 (3.3)	3.9(5.1)	5.7(3.6)

Electron channel

	Fraction	$\delta M_W ~({ m MeV})$		
Source	(%)	m_T fit	p_T^e fit	$p_T^{ u}$ fit
$Z/\gamma^* \to ee$	0.134 ± 0.003	$0.2 \ (0.3)$	0.3(0.0)	0.0 (0.6)
$W \to \tau \nu$	0.94 ± 0.01	0.6(0.0)	0.6(0.0)	0.6~(0.0)
Hadronic jets	0.34 ± 0.08	2.2(1.2)	0.9(6.5)	6.2(-1.1)
Total	1.41 ± 0.08	2.3(1.2)	1.1 (6.5)	6.2(1.3)
 Pookaroundo oro omoli				

Backgrounds are small (except $Z \rightarrow \mu \mu$ with a forward muon)

Fitting blind

All fits (Z, W) blinded with an unknown [-50,+50] MeV offset

> In this way we studied the techinque and the systematics close to the actual value keeping Z and W mass exact value, unknown by ±50 MeV

Offset **removed** ***after*** the analysis was declared "frozen" and "approved"

Combined electrons (3 fits): M_W =80424.6±13.2 MeV, P(χ^2) =19% Combined muons (3 fits) : M_W =80437.9±11.0 MeV, P(χ^2) =17%

Uncertainties: New & Old

Source	Uncertainty (MeV)	Source	Uncertainty
Lepton energy scale	3.0	Lepton Energy Scale	7
Lepton energy resolution	1.2	Lepton Energy Resolution	2
Recoil energy scale	1.2	Recoil Energy Scale	4
Recoil energy resolution	1.8	Recoil Energy Resolution	4
Lepton efficiency	0.4	u_{\parallel} efficiency	0
Lepton removal	1.2	Lepton Removal	2
Backgrounds	3.3	Backgrounds	2
p_T^Z model	1.8	Dackgrounds	J F
$p_T^W/p_T^Z \mathrm{model}$	1.3	$p_T(W)$ model	5
Parton distributions	3.9 Ta	Parton Distributions	10
QED radiation	2.7	QED radiation	4
W boson statistics	6.4	W boson statistics	12
Total	9.4	Total	19

Updates wrt 2.2 fb-1

Method or technique	impact	section of paper
Detailed treatment of parton distribution functions	+3.5 MeV	IV A
Resolved beam-constraining bias in CDF reconstruction	$+10 { m MeV}$	VIC
Improved COT alignment and drift model [65]	uniformity	VI
Improved modeling of calorimeter tower resolution	uniformity	III
Temporal uniformity calibration of CEM towers	uniformity	VII A
Lepton removal procedure corrected for luminosity	uniformity	VIII A
Higher-order calculation of QED radiation in J/ψ and Υ decays	accuracy	VI A & B
Modeling kurtosis of hadronic recoil energy resolution	accuracy	VIII B 2
Improved modeling of hadronic recoil angular resolution	accuracy	VIIIB3
Modeling dijet contribution to recoil resolution	accuracy	VIIIB4
Explicit luminosity matching of pileup	accuracy	VIII B 5
Modeling kurtosis of pileup resolution	accuracy	$\rm VIIIB5$
Theory model of p_T^W/p_T^Z spectrum ratio	accuracy	IV B
Constraint from p_T^W data spectrum	robustness	VIII B 6
Cross-check of p_T^Z tuning	robustness	IV B

Several improvements thanks to theoretical work

35

W Boson Mass Measurements from Different Experiments

The statistical precision of the measurement from the four times larger sample is improved by almost a factor of 2

- To achieve a commensurate reduction in systematic uncertainties, a number of analysis improvements have been incorporated:
- These improvements are based on using cosmic-ray and collider data in ways not employed previously to improve:
 - the COT alignment and drift model and the uniformity of the EM calorimeter response
 - the accuracy and robustness of the detector response and resolution model in the simulationTtheoretical inputs to the analysis have been updated
- Upon incorporating the improved understanding of PDFs and track reconstruction, our *previous measurement* is increased by 13.5 MeV to 80400.5 MeV
 - consistency of the latter with the new measurement is at the percent probability level

The W boson mass is a very interesting parameter to measure with increasing precision

> 39 years after its discovery...

New result is twice better than old one

M_w=80433.5±6.4stat±6.9 syst MeV

M_w=80433.5±9.4 (stat.+syst) MeV

Difference from SM expectation, M=80357±6 MeV

> significance of 7.0 σ

suggests the possibility of improvements to the SM calculation or of extensions to the SM

Ringraziamenti (non di prammatica)

Colgo l'occasione per ringraziare, a nome di tutto CDF, l'INFN per il suo supporto, continuo e convinto dai primi anni '80 del secolo scorso

Generazioni di studenti si sono succeduti ed hanno contribuito al successo di questo esperimento

- Negli ultimi anni il supporto è continuato
 - Per questa analisi il CNAF ci ha dato la sicurezza che, a fronte di un supporto calante da parte di Fermilab, le nostre capacità di analisi erano garantite
- Un grazie sentito da parte degli spokespersons (Dave Toback & G.C.)

