Status of Mu2e and COMET experiments

Workshop on flavour changing and conserving processes 2022 22-24 September 2022 – Capri

Charge Lepton Flavour Violation 15 Orbit Lifetime = 864ns

CLFV processes strongly suppressed in Standard Model
 ✓ in principle, not forbidden due to neutrino oscillation

- ✓ in practice, negligible (rate ~ $\Delta M_v^4/M_W^4$ <10⁻⁵⁰)
- Broad array of New Physics models predict rates observable at next generation CLFV experiments

any observation of CLFV would be unambiguous evidence of New Physics

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP}\left(B\to X_s\gamma\right)$	*	*	*	***	***	*	?
$A_{7,8}(K^*\mu^+\mu^-)$	*	*	*	***	***	**	?
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \to e \gamma$	***	***	***	***	***	***	***
$ au ightarrow \mu\gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?
W Altmannshofer er al Nuclear Physics B 830 (2010)							

Most promising CLFV measurements use muons:

- clean topologies
- large rates
- sensitive to many NP models

CLFV@Mu2e/COMET: coherent neutrinoless conversion of a muon to an electron in the field of a nucleus

★★ Large effects
 ★★ Visible but small

★ No sizeable effect

Charge Lepton Flavour Violation 15 Orbit Lifetime = 864ns

S.Giovannella – Status of Mu2e and COMET Experiments – 24 September 2022

AI 27

Nuclear Recoil

CLFV with muons

Mu2e and COMET aim to improve by a factor 10⁴ the present best limit

$\mu N \rightarrow eN$: experimental technique

- **X** Beam of low momentum muons
- X Muons stopped in AI target
- X Muons trapped in orbit around the nucleus
- X Look for μ [−]N(A,Z) → e[−]N(A,Z) events: mono-energetic e[−] with E ~ M_µ, produced
- X Normalize to muon captures counting emitted muonic X-rays

1S Orbit Lifetime = 864r

 τ_{μ}^{AI} = 864 ns

Muonic atom at rest can undergo to:

Nuclear capture ~ 61% Decay In Orbit (DIO) ~ 39% Conversion < 10⁻¹² Image: Conversion factor Image: Conversion factor Image: Conversion factor

Slow neutrons and protons + γ 's from muon capture create a lot of random hits in the detector

$\mu N \rightarrow eN$: experimental conceptities and the second seco

Concept of the Mu2e/COMET experiments proposed by Lobashev and Djilkibaev in 1989 for the MELC experiment at INR, Russia [Sov.J.Nucl.Phys. 49, 384 (1989)]

Key ideas:

Very intense muon beam

- Soft pions confined with solenoidal B field
- Strong gradient to increase the yield through magnetic reflection

Pulsed beam

- Delayed live gate to suppress prompt backgrounds
- Narrow proton pulses
- > $O(10^{10})$ out-of-time protons suppression

Muon decays in orbit

Signal

- Cosmic Ray muons can fake signal events or knock out an electron
- These events are proportional to the running time higher beam intensity is preferrable

Detector region covered by Cosmic Ray Veto counters: 10⁻⁴ inefficiency required

- Nuclear modifications push DIO spectrum near conversion electron (CE)
- DIO and CLFV signal, overlap after energy loss and detector resolution
- e^{-} detection with a momentum resolution $\lesssim 0.2\%$ is required

Mu2e and COMET

Two experiments are under construction to search for coherent muon conversion:

COMET (J-PARC, KEK, JP) Mu2e (Fermilab, US) **Medium-size collaborations:**

- > 200 members
- \sim 40 institutes

Goal: improvement by a factor of 10⁴ on the measurement of

 $R_{\mu e} = \frac{\Gamma\left(\mu^{-} + N(A, Z) \to e^{-} + N(A, Z)\right)}{\Gamma\left(\mu^{-} + N(A, Z) \to all \ muon \ captures\right)}$

Current best limit set by Sindrum-II $R_{ue} < 7 \times 10^{-13}$

reaching a final single-event-sensitivity of 3 ×10⁻¹⁷ through different running phases

This requires: $\begin{cases} 10^{18} \text{ stopped muons} \\ \text{high background suppression } (N_{bckg} \ll 0.5) \end{cases}$

Mu2e and COMET

Goal: improvement by a factor of 10⁴ on the measurement of

$$R_{\mu e} = \frac{\Gamma\left(\mu^{-} + N(A, Z) \to e^{-} + N(A, Z)\right)}{\Gamma\left(\mu^{-} + N(A, Z) \to all \ muon \ captures\right)}$$

Current best limit set by Sindrum-II R_{µe}< 7 x 10⁻¹³

reaching a final single-event-sensitivity of 3 ×10⁻¹⁷ through different running phases

This requires: -

10¹⁸ stopped muons

high background suppression ($N_{bckg} \ll 0.5$)

Some perspectives

1,000,000,000,000,000,000 = number of stopped Mu2e muons = number of grains of sand on earth

The Mu2e Experiment

The Mu2e Tracker

Detector requirements:

- Small X₀
- σ_p < 180 keV @ 105 MeV
- Good rate capability (20 kHz/cm² in live window, beam flash of 3 MHz/cm²)
- dE/dx capability to distinguish e⁻/p

- > 20,000 low-mass straw tubes, 5 mm Ø, 33 117 cm length
- 15 μ m Mylar wall, 25 μ m Au-plated W wire, 80:20 Ar:CO₂ @ 1 atm
- Dual-ended readout > position along wire
- Self-supporting panel consists of 2×48 straws, two staggered layers
- Rotation of panels (stereo reconstruction) arranged in planes on stations

Expected momentum resolution

from fully tuned simulation

The Mu2e Calorimeter

- PID: e/μ separation
- EMC seeded track finder
- Standalone trigger

 \geq \geq

Requirements:

- $\sigma_{\rm E}/{\rm E} = \mathcal{O}(10\%)$ for CE
- σ_T < 500 ps for CE
- $\sigma_{X,Y} \leq 1 \text{ cm}$
- High acceptance for CE

EMC Design:

- \blacktriangleright Two annular disks, 10X₀ length, ~ 75 cm separation
- 2× 674 square x-sec pure Csl crystals, (34×34×200) mm³
- For each crystal, two custom array (2×3 of 6×6 mm²) large area UV-extended SiPMs
- Analog FEE directly mounted on SiPM
- Calibration/Monitoring: 6 MeV radioactive source + laser

σ_T < 150 ps $\sigma_{\rm F} < 10\%$ @ 100 MeV

- Redundancy in readout
- Radiation hard: 90 krad photons and 3×10¹² n/cm²

The Mu2e Cosmic Ray Veto

 \sim 1 event/day from cosmic rays producing a fake signal event per day without a CRV

→ Passive shielding + PID trk/EMC + CRV

1S Orbit Lifetime = 864ns

Nuclear Recoil

- CRV covers the entire Detector Solenoid and half Transport Solenoid
- Four layers of extruded plastic scintillator (5×2×85÷690) cm³ + absorber
- 2 WLS fibers (1.4 mm diameter) + (2×2) mm² SiPM readout
- 3/4 layers hit: 125 ns veto

Mu2e construction: solenoids orbit etime = 864/s

- Production Solenoid (3 units):
 - PS coils completed and assembled
 - Cold Mass cryo assembly 75% complete
- Transport Solenoid (14 units):
 - TSu cryostat, TSd thermal shield in place
 - Successful TS testing campaign
- Detector Solenoid (11 units):
 - 8 coils completed, remaining 3 in fabrication
- Cryogenics and Quench protection:
 - PS/TSu cryo feedboxes installed, 8 transfer lines done
 - Quench protection system assembled or in process

Mu2e construction: beam

- Resonant Extraction Magnets installed and tested with beam
 - Electrostatic Septum (ESS) prototype completed
- Beamline diagnostic absorber operational
 - w\ instrumentation, controls and safety system
 - 8 GeV proton beam transported to beamline diagnostic absorber on 14 April 2022, with 90% transmission
- Production Target assembled
 - Handling Remote System fabrication completed, ready to be installed into PS
- Stopping Target assembled

Mu2e construction: tracker

Assembling

- 92% of panels and 20/36 planes produced
- Quality Assurance and Control follow closely
- Electronics
 - Pre-production performance validation completed
- Vertical Slice Test

Tracker stations

- Low noise rate and high efficiency
- Successful track reconstruction w/ time and drift info
- Resolution and efficiency meet expectations

Mu2e construction: calorimeter

MIP charge distribution

Entries 000

250

SENSOR 0 Amplitude (ADC counts)

150

30000

25000

Assembling

- 1st calorimeter disk fully loaded with crystals
- Procurements well advanced for source/laser
- **Electronics**
- **Vertical Slice Test**

Mu2e construction: CR veto

Assembling

- 69/83 successfully fabricated modules @ FNAL
- QC: visual inspection and checks for dead channels and light tightness
- CRV tests @ FNAL
 - Light yield monitoring, long-term stability
 - Single layer efficiency \rightarrow CRV module efficiency estimate
 - Practicing calibration algorithms

1S Orbit Lifetime = 864ns

Nuclear Recoil

S.Giovannella – Status of Mu2e and COMET Experiments – 24 September 2022

120

120

Mu2e Sensitivity Estimate

1S Orbit Lifetime = 864ns

Recent sensitivity estimate for 3.8×10^{19} POT (first running phase) using detailed simulation

- 5σ discovery R_{μe} = 1.1 × 10⁻¹⁵
- 90% CL R_{ue} < 5.9 × 10⁻¹⁶
- ×1000 better than SINDRUM-II limit
- Total background: 0.11 ± 0.03_{stat.+syst.} events
 - Cosmics = 0.05 ± 0.01 events
 - DIO = 0.04 ± 0.02 events

The COMET Experiment

- 3.2 kW, 8 GeV p beam, graphite p target
- 1.2×10⁹ stopped μ/s
- 5 months data taking
- CLFV search: SES = 3.1×10⁻¹⁵
- Direct measurement of the muon beam with prototypes of Phase-II detectors

- 56 kW, 8 GeV p beam, tungsten p target
- 2×10¹¹ stopped μ/s
- 1 year data taking
- Vertical B field to steer desired charge and momentum along beam centre
- CLFV search: SES = 2.7×10⁻¹⁷

Studies underway to further improve sensitivity

COMET Phase-II

1S Orbit Lifetime = 864ns

- Beam gradually disperses in C-shaped curved solenoids
- Vertical dipole field used to pull back the beam
- Example: steering of signal electrons (105 MeV/c)

COMET: the CyDet detector

 χ^2 / ndf

Mean

Sigma

Constan

1850/37

7047 ± 25.2

 0.163 ± 0.000

1.5 residual[m

 -0.0166 ± 0.0005

CyDet designed for Phase-I CLFV physics:

- Cylindrical Drift Chamber (CDC)
 - > All-stereo layers \rightarrow z information
 - He-based gas minimizing multiple scattering
 - ▶ Large inner bore: no beam flash and DIO e^-

Preliminary CR results (all channels, full DAQ chain + monitoring):

- Good stability after > 2 years
- 170 μm spatial resolution
- 98% hit efficiency

1S Orbit Lifetime = 864ns

Nuclear Recoil

MC: high side momentum resolution ~ 200 keV/c

S.Giovannella – Status of Mu2e and COMET Experiments – 24 September 2022

6000

5000

4000

3000

2000

1000

-1.5 -1

-0.5 0 0.5

COMET: the CyDet detector

CyDet designed for Phase-I CLFV physics:

- Cylindrical Trigger Hodoscope (CTH)
 - > 2x64 plastic scintillator rings for timing ($\sigma_T \sim 0.8$ ns)
 - > Tilted support structure to optimize signal acceptance
 - 5-10 m optical fiber readout coupled to MPPCs (outside high radiation detector region)

1S Orbit Lifetime = 864ns

Nuclear Recoil

CTH prototype: 100 MeV e⁻ test beam to evaluate photon yield, timing, resolution

MPPC cooling and irradiation test successfully carried out in May 2022

COMET: the CyDet detector

CyDet designed for Phase-I CLFV physics:

Cosmic Ray Veto

- > CR background rejection with ε = 99.99%
- 4 layers of plastic scintillators with optical fibers and SiPM readout, triple coincidence
- First full-scale module completed

- Muon Stopping Target
 - Ongoing target optimization: Ndisks and thickness vs stability and background
 - Prototype currently underway, including holder

1S Orbit Lifetime = 864ns

Nuclear Recoil

Germanium detector

Canadadada

- Measurement of muonic X-rays for muon stop normalization
- DAQ under development
- > MC studies for position and shielding

COMET: the StrECAL detector of the street of

StrECAL designed for Phase-I beam measurements and Phase-II prototyping

Electromagnetic calorimeter

- 2×2 cm² LYSO crystals (~ 500)
- 1×1 cm² APD readout
- Design completed

Test of ECAL prototype

Results for 105 MeV electrons

- energy resolution < 4.5%</p>
- position resolution < 10 mm</p>
- timing resolution < 1 ns</p>

COMET: the StrECAL detector of the street of

StrECAL designed for Phase-I beam measurements and Phase-II prototyping

Straw tube detector

- 20 µm thick, 9.75 mm diameter
- Production complete
- Vacuum and deformation tested
- Five stations of 2 staggered x planes and 2 staggered y planes
- First layer assembled
- Assembly of all five stations expected by March 2023

Test of prototype in vacuum, 100 MeV e^{-1} :

- Ar:Ethane = 50:50 & Ar:CO₂ = 70:30
- position resolution <200 µm for</p> 50:50 Argon/Ethane
- momentum resolution ~180-200 keV/c (straw track fitting based on Genfit2)

COMET construction: solenoids

Transport Solenoid

- Pion Capture Solenoid (CS): cold masses into cryostat in 2022, delivery in 2023
- Transport Solenoid (TS): installed and ready for cryogenics tests
- Detector Solenoid (DS): coil and cryostat ready

Ready by 2023

DS coil delivered 2015 Coll

COMET sensitivity estimate

- COMET Phase-I Target single event sensitivity : 3x10⁻¹⁵
 - 100 times improvement from SINDRUM-II
 - Phase-II : 2.5 × 10⁻¹⁷ ~ 10⁻¹⁸
- Net acceptance = 4.1%
 - Geometric acceptance + track quality ~ 0.18
 - 103.6 MeV < p < 106MeV : 0.93
 - 700 ns < t < 1170 ns : 0.3
- Background = 0.032
 - DIO ~ 0.01 (dominant)
 - RPC ~ 0.003, Cosmic < 0.01

1S Orbit Lifetime = 864ns

Nuclear Recoil

COMET: phase-α

- 8-GeV low-intensity (260 W) proton beam delivery to COMET
- 15-day run in April 2023
 - Proton beam line commissioning
 - Direct extinction measurements at the COMET area
 - Demonstration of the muon transport system
 - Estimation of backward pions/muons production yields
 - Measurement of yields of secondary particles, others

Graphite target Beam-loss monitor secondary secondar particles particles Proton beam Proton beam Transport Solenoid (TS) Beam pipes Transport Solenoid Status Available to use Phase-α target holder Muon Beam Monitor Under development Hodoscope (Backup) Beam-loss measuring stainless target Particles 2. Beam profile measurement Range Counter Straw Tube Tracker

S.Giovannella – Status of Mu2e and COMET Experiments – 24 September 2022

1S Orbit Lifetime = 864ns

Nuclear Recoil

1. Beam loss

on target

Run schedule

COMET

- Phase-α planned for end of JFY2022
- Phase-I detector ready by end 2023
- Facility ready for Phase-I on April 2024
 - 10² improvement over SINDRUM-II
- No official Phase-II schedule from KEK

Mu2e

- Beam on target late 2024
- Run1: 2025-2026 (from half to full intensity)
 - \blacktriangleright 4.5×10⁹ \rightarrow 8.57×10⁹ stopped µ/s
 - > 10³ improvement over SINDRUM-II
- PIP-II/LBNF shutdown: end of 2026
- Run2: early 2029
 - 10⁴ improvement over SINDRUM-II by the end of the decade

Current schedule for experiment's startup:

2023	2024	2025	2026	
COMET Phase- α	COMET Phase-I	Mu2e Run1		
	SES 3×10-15		SES 3×10-1	

Conclusions

- 1S Orbit Lifetime = 864ns
- MU2E@FNAL and COMET@KEK will search for CLFV in muon-toelectron conversion
 - > discovery capability over a wide range of New Physics models
 - ➢ Final goal: 10⁴ improvement w.r.t. current measurement (SES 10⁻¹⁷)
- Design phase completed
- Construction phase in full swing
- Installation, commissioning and data taking will follow

CLFV and New Physics

If SUSY seen at LHC \rightarrow rate ~10^{-15}

Implies O(40) reconstructed signal events with negligible background in Mu2e for many SUSY models.

Mu2e keeps discovery sensitivity for all SUSY benchmark point for LHC Phase2

Mu2e Diagnostic absorber

Mu2e Stopping Target Monitor This Al²⁷

High-purity Germanium detector to determine overall muon-capture rate on AI to the level of 10%

- measure X- and γ -rays from muonic Aluminum
 - 347 keV 2p-1s X-ray (80% of muon stops)
 - 844 keV delayed γ -ray (5% of muon stops)
 - 1809 keV γ-ray (30% of muon stops)

- line-of-sight view of Muon Stopping Target
- sweeper magnet to reduce charged particle background and radiation damage to detector
- It was decided to accompany the HPGe detector with a LaBr₃ detector (worse energy resolution, but can take higher rates)

The Mu2e proton target

After several iterations, the final design was chosen, which preserves the number of muons per POT, while increasing the capability to radiate away the energy

The COMET proton target

Proton target for Phase-I

- Graphite rod with radiation cooling
- Proton beam power 3.2 kW
- Radius 13 mm, length 700 mm
- Design of support underway
- Proton target for Phase-II
 - Tungsten rod with water/He cooling
 - Radius 5 mm, length 250 mm
 - Proton beam power, 56 kW
 - graphite rod with radiation cooling is another option (pion yield is lower)

The COMET CDC

1S Orbit Lifetime = 864ns

- 20 concentric sense layers (including 2 guard layers)
- All stereo layers: ±70 mrad (alternate)
 - z information
- Helium based gas:
 - minimize multiple scattering
- Large inner bore: ~ 500 mm radius
 - avoid beam flash and DIO
 - momentum cut > 80 MeV/c

sense wire	25 µm, gold-plated tungsten			
field wire	126 µm, pure Aluminium			
inner wall	0.5 mm, CFRP			
outer wall	5.0 mm, CFRP			

- Signal tracks (~105 MeV/c) contained inside the CDC
 - better momentum resolution
- 60 % for single turn tracks and 40 % for multiple turn tracks (for triggered events)

COMET: Phase-II R&D

Successfully developed tubes with *12 micron-thick walls*

- Diameter 5 mm (half of Phase-I)
- Overpressure of 1 bar:
 0.1 micron-level accuracy
- Tested at more than 4 bar overpressure

The COMET Cosmic Ray Veto S Orbit Nuclear Recoin

- Requirements:
 - Reject CR-backgrounds with efficiency of 99.99%
- Passive CRV
 - concrete, HDPE, and lead
- Active CRV
 - 4 layers of plastic scintillators with optical fibers and SiPM readout
 - triple coincidence
 - Glass resistive plate chambers (GRPC) in high neutron flux areas
 - under preparation
 - 5 walls, each wall composed of panels

scintillators (yellow) and GRPC (purple)

Beam for Muon Campus

Recycler: fixed 8 GeV proton ring

Beams both to Muon Campus and neutrino experiments

Separate runs for g-2 and Mu2e

g-2: target before the delivery ring, 3.1 GeV π^+ selected, clean, polarized μ^+ beam

Mu2e: 8 GeV protons to Mu2e hall

A typical Mu2e signal event

Signal electron, together with all the other hits/tracks occurring simultaneously, integrated over 500-1695 ns window

1S Orbit Lifetime = 864n

Nuclear Recoil