Introduction	HVP from lattice QCD	Lattice challenges	Window observable	Improvements	Conclusions

Leading hadronic contribution to the muon g - 2 from lattice QCD

Bálint C. Tóth

University of Wuppertal

Budapest-Marseille-Wuppertal collaboration

Introduction ●○	HVP from lattice QCD	Lattice challenges	Window observable	Improvements	Conclusions O
Tensio	ns in $a_{\!\mu}^{ m LO-HV}$	Р			

- 4.2 σ between WP'20 and experiment
- 1.5 σ between BMW'20 and experiment
- 2.1 σ between WP'20 and BMW'20

• LO hadron vacuum polarization (LO-HVP, $(\frac{\alpha}{\pi})^2$)

• NLO hadron vacuum polarization (NLO-HVP, $(\frac{\alpha}{\pi})^3$)

• Hadronic light-by-light (HLbL, $\left(\frac{\alpha}{\pi}\right)^3$)

 pheno a^{HLbL}_μ = 9.2(1.9) [Colangelo, Hoferichter, Kubis, Stoffer et al '15-'20]
 lattice a^{HLbL}_μ=7.9(3.1)(1.8) or 10.7(1.5) [RBC/UKQCD '19 and Mainz '21]

Introduction	HVP from lattice QCD	Lattice challenges	Window observable	Improvements	Conclusions

HVP from lattice QCD

Neutron-proton difference [BMWc '14]

Introduction	HVP from lattice QCD	Lattice challenges	Window observable	Improvements	Conclusions O
Lattice	QCD				

- Lattice gauge theory:
 - Ist principles method
 - non-perturbative sum over all Feynman-diagrams at once (and beyond)
 - only imaginary (Euclidean) time is accessible (no problem for a_{μ})
- Discretize space-time with lattice spacing: a

- quarks on sites, gluons on links
- olicity discretize action + operators

$$\int d^4x \longrightarrow a^4 \sum_x \\ \partial_\mu \longrightarrow \text{ finite differences}$$

- Different fermion discretizations: staggered, Wilson, twisted mass, domain wall, overlap, ...
- To get physical results, need to perform:

Infinite volume limit $(V \rightarrow \infty) \longrightarrow$ numerically or analytically Continuum limit $(a \rightarrow 0) \longrightarrow$ min. 3 different a

FCCP 2022, Anacapri, 23 Sept 2022

B. C. Tóth

LO-HVP contribution to $(g-2)_{\mu}$ from lattice QCD

00	00000	0000000	00	000	0
Lattice	QCD				

Integrate over all classical field configurations 0

$$\int [\mathrm{d} U] \, [\mathrm{d} \overline{\psi}] \, [\mathrm{d} \psi] \, O \, e^{-S_{\mathrm{g}}(U) - \overline{\psi} \, M(U) \, \psi}$$

- E.g. $96^3 \times 144$ lattice $\longrightarrow \approx 4 \cdot 10^9$ dimensional integral
- Stochastic integration

100000 years for a laptop 1 year for supercomputer ٥ \rightarrow

Q is available at discrete momenta only

0.15

0.1

Q²[GeV²]

• need $\Pi(Q^2) - \Pi(0)$, but $\Pi(0)$ is not directly accessible

0.2

smooth interpolation in Q and prescription for $\Pi(0)$

[Bernecker, Meyer '11], [HPQCD'14], ...

0.05

0.005 0 0

$$C(t) = \frac{1}{3} \sum_{i=1}^{3} \langle J_i(t) J_i(0) \rangle$$

K(t) describes the leptonic part of diagram [Berne]

$$K(t) = \int_0^{Q_{\text{max}}^2} \frac{dQ^2}{m_{\mu}^2} \,\omega\left(\frac{Q^2}{m_{\mu}^2}\right) \left[t^2 - \frac{4}{Q^2}\sin^2\left(\frac{Qt}{2}\right)\right]$$
$$\omega(r) = [r + 2 - \sqrt{r(r+4)}]^2 / \sqrt{r(r+4)}$$

• only integrate up to $Q_{max}^2 = 3 \, GeV^2$

• $Q^2 > Q_{max}^2$: perturbation theory

4

[Bernecker,Meyer '11], [HPQCD'14], ...

Introduction	HVP from lattice QCD	Lattice challenges	Window observable	Improvements	Conclusions	

Challenges for lattice

• noise/signal in $C(t) = \langle J(t)J(0) \rangle$ grows for large distances

- Low Mode Averaging: use exact (all2all) quark propagator in IR and stochastic in UV
- decrease noise by replacing C(t) by upper/lower bounds above t_c

$$0 \leq C(t) \leq C(t_c) e^{-E_{2\pi}(t-t_c)}$$

→ few permil level accuracy on each ensemble

Introduction	HVP from lattice QCD	Lattice challenges	Window observable	Improvements	Conclusions O
Finite-s	size effects				

Typical lattice runs use L < 6 fm, earlier model estimates gave O(2)% FV effect.</p>

 $L_{\rm ref}=6.272\,{\rm fm}$

$$L_{\rm big} = 10.752\,{
m fm}$$

1. $a_{\mu}(big) - a_{\mu}(ref)$

- perform numerical simulations in $L_{big} = 10.752 \, \text{fm}$
- perform analytical computations to check models

lattice	NLO XPT	NNLO XPT	MLLGS	HP	RHO
$18.1(2.0)_{stat}(1.4)_{cont}$	11.6	15.7	17.8	16.7	15.2

2. $a_{\mu}(\infty) - a_{\mu}(big)$

• use models for remnant finite-size effect of "big" $\sim 0.1\%$

Introduction	HVP from lattice QCD	Lattice challenges	Window observable	Improvements	Conclusions O		
Scale determination							

Lattice spacing *a* enters into a_{ij} determination:

- physical values of m_{μ}, m_{π}, m_{K}
- $\rightarrow \Delta_{\text{scale}} a_{\prime\prime} \sim 1.8 \cdot \Delta(\text{scale})$ [Della Morte *et.al.* '17]

If the set of the set of the

- Experimentally well known: 1672.45(29) MeV [PDG 2018]
- Moderate m_a dependence
- 0 Can be precisely determined on the lattice

For separation of isospin breaking effects: w_0 scale setting No experimental value

 \rightarrow Determine value of w_0 from $M_0 \cdot w_0$

 $w_0 = 0.17236(29)(63)[70]$ fm

[Lüscher 2010] [BMWc 2012]

Introduction	HVP from lattice QCD	Lattice challenges	Window observable	Improvements	Conclusions O	
QCD+	QED					

- Reach sub-percent level: include isospin breaking effects for
 - 〈jj〉
 - masses
 - scale
- Rewrite dynamical QED as quenched QED expectation values

$$\left\langle O\right\rangle_{\text{QCD+unquenched QED}} = \frac{\left\langle \left\langle O(U,A) \frac{\det M(U,A)}{\det M(U,0)} \right\rangle_{\text{quenched QED}} \right\rangle_{\text{QCD}}}{\left\langle \left(\frac{\det M(U,A)}{\det M(U,0)} \right)_{\text{quenched QED}} \right\rangle_{\text{QCD}}}$$

- Take isospin symmetric gluon configurations: U
- Compute derivatives

$$m_l \frac{\partial X}{\partial \delta m}$$
 $\frac{\partial X}{\partial e}$ $\frac{1}{2} \frac{\partial^2 X}{\partial e^2}$

Hybrid approach:

- sea effects: derivatives
- valence effects: finite differences

[De Divitiis et.al. 2013] [Eichten et.al. 1997]

Introduction	HVP from lattice QCD	Lattice challenges	Window observable	Improvements	Conclusions O	
Contin	uum limit					

Controlled $a \rightarrow 0$ extrapolation

- 6 lattice spacings: 0.132 fm \longrightarrow 0.064 fm
- Leading cutoff effects at large t are taste breaking effects → mass effects
- Distortion in spectrum: cured by taste improvement rho-pion-gamma model (SRHO)

[Sakurai '60][Bijnens et.al. '99][Jegerlehner et.al. '11][Chakraborty et.al. '17]

 Several hundreds of thousands of analyses, combined using histogram method

linear vs. quadratic, a^2 vs $a^2 \alpha_s (1/a)^3$ cuts in lattice spacing, hadron mass fit ranges, ...

[Husung et.al 2020]

 Uncertainty arising from choice of taste improvement: Added to systematic error in quadrature

Introduction	HVP from lattice QCD	Lattice challenges	Window observable	Improvements	Conclusions O

Overview of contributions

Introduction 00	HVP from lattice QCD	Lattice challenges	Window observable	Improvements	Conclusions O

Final result

- $10^{10} \times a_{\mu}^{\text{LO-HVP}} = 707.5(2.3)(5.0)[5.5]$ with 0.8% accuracy
- consistent with new FNAL experiment
- 2.0 σ larger than [DHMZ'19], 2.5 σ than [KNT'19]

Introduction	HVP from lattice QCD	Lattice challenges	Window observable	Improvements	Conclusions

Window observable

Introduction	HVP from lattice QCD	Lattice challenges	Window observable ●○	Improvements	Conclusions O		
Window observable							

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

[RBC/UKQCD'18]

- Less challenging than full a_{μ}
 - signal/noise
 - finite size effects
 - lattice artefacts (short & long)

FCCP 2022, Anacapri, 23 Sept 2022

B. C. Tóth

LO-HVP contribution to $(g-2)_{\mu}$ from lattice QCD

● Latest result from each group → consensus within lattice community

lattice discrepancy has to be understood

FCCP 2022, Anacapri, 23 Sept 2022

R-ratio vs

Introduction	HVP from lattice QCD	Lattice challenges	Window observable	Improvements	Conclusions O

Ongoing improvements

• a = 0.048 fm $128^3 \times 192$ (previously a = 0.064 fm $96^3 \times 144$)

Introduction	HVP from lattice QCD	Lattice challenges	Window observable	Improvements 000	Conclusions O		
More operators							

- Current operator can be discretized in different ways
- Different result at finite lattice spacing, more control over continuum extrapolation

Introduction	HVP from lattice QCD	Lattice challenges	Window observable	Improvements	Conclusions O
QED c	ontribution				

• Eliminating a chiral extrapolation by direct computation at the physical mass

Introduction	HVP from lattice QCD	Lattice challenges	Window observable	Improvements	Conclusions

Conclusions & Outlook

Introduction	HVP from lattice QCD	Lattice challenges	Window observable	Improvements	Conclusions •	
Conclusions & Outlook						

• Reduce uncertainty on $a_{\mu}^{\text{LO-HVP}}$

Understand window discrepancy

Introduction	HVP from lattice QCD	Lattice challenges	Window observable	Improvements	Conclusions O