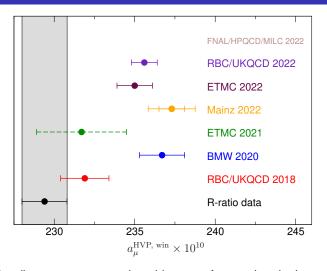
Dispersive determination of the HVP contribution to the muon g-2

UNIVERSITÄT BERN

ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS


Martin Hoferichter

Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern

Sep 23, 2022

FCCP 2022, Anacapri, Capri Island

What the hell is going on with HVP?

In this talk: no new answers, but old ones to frequently asked questions, and some more perspectives

More details: TI workshop at Higgs Centre

For more details of recent developments, see website of the Fifth Plenary Workshop of the ${\bf Muon}~g-{\bf 2}$ Theory Initiative at the Higgs Centre in Edinburgh

→ https://indico.ph.ed.ac.uk/event/112/

Hadronic vacuum polarization: a reminder

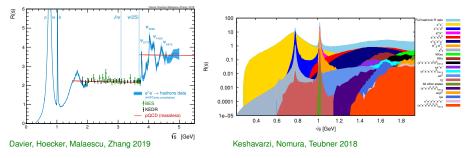
- General principles yield direct connection with experiment
 - Gauge invariance

$$\qquad \qquad k, \mu \qquad \qquad k, \nu \qquad = -i(k^2g^{\mu\nu} - k^{\mu}k^{\nu})\Pi(k^2)$$

Analyticity

$$\Pi_{\text{ren}} = \Pi(k^2) - \Pi(0) = rac{k^2}{\pi} \int\limits_{4M_\pi^2}^{\infty} \mathrm{d}s rac{\mathrm{Im}\,\Pi(s)}{s(s-k^2)}$$

Unitarity

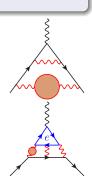

$$\operatorname{Im}\Pi(s) = -rac{s}{4\pilpha}\sigma_{ ext{tot}}ig(e^+e^-
ightarrow ext{hadrons}ig) = -rac{lpha}{3} extcolor{R}_{ ext{had}}(s)$$

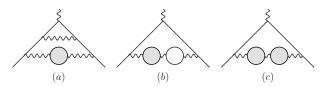
Master formula for HVP contribution to a_{μ}

$$extbf{a}_{\mu}^{ extsf{HVP,LO}} = \left(rac{lpha m_{\mu}}{3\pi}
ight)^2 \int_{s_{ ext{hr}}}^{\infty} extit{ds} rac{\hat{K}(s)}{s^2} extit{R}_{ ext{had}}(s)$$

Hadronic vacuum polarization from e^+e^- data

- Decades-long effort to measure e⁺e⁻ cross sections
 - cross sections defined photon-inclusively \hookrightarrow threshold $s_{\rm thr}=M_{\pi^0}^2$ due to $\pi^0\gamma$ channel
 - up to about 2 GeV: sum of exclusive channels
 - above: inclusive data + narrow resonances + pQCD
- ullet Tensions in the data: most notably between KLOE and BaBar 2π data
 - ⇔ extensive discussion in WP of current status and consequences




Data-driven determination of HVP: our recommendation

HVP from e^+e^- data

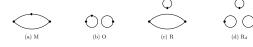
$$\begin{aligned} & \textbf{a}_{\mu}^{\text{HVP,LO}} = 6931(28)_{\text{exp}}(28)_{\text{sys}}(7)_{\text{DV+QCD}} \times 10^{-11} = 6931(40) \times 10^{-11} \\ & \textbf{a}_{\mu}^{\text{HVP}} = 6845(40) \times 10^{-11} \end{aligned}$$

- DV+QCD: comparison of inclusive data and pQCD in transition region
- Sensitivity of the data is better than the quoted error \hookrightarrow would get $4.2\sigma \rightarrow 4.8\sigma$ when ignoring additional systematics
- Systematic effect dominated by [fit w/o KLOE fit w/o BaBar]/2
- ullet a_{μ}^{HVP} includes NLO Calmet et al. 1976 and NNLO Kurz et al. 2014 iterations

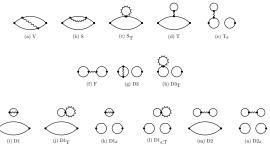
- Conventions for bare cross section
 - Includes radiative intermediate states and final-state radiation: $\pi^0 \gamma$, $\eta \gamma$, $\pi \pi \gamma$, ...
 - Initial-state radiation and VP subtracted to avoid double counting
- NLO HVP insertions

$$a_{\mu}^{\text{HVP, NLO}} \simeq \underbrace{[-20.7}_{(a)} + \underbrace{10.6}_{(b)} + \underbrace{0.3}_{(c)}] \times 10^{-10} = -9.8 \times 10^{-10}$$

- → dominant VP effect from leptons, HVP iteration very small
- Important point: no need to specify hadronic resonances
 - \hookrightarrow calculation set up in terms of decay channels


ullet HVP in subtraction determined iteratively (converges with lpha) and self-consistently

$$\alpha(q^2) = \frac{\alpha(0)}{1 - \Delta\alpha_{\mathsf{lep}}(q^2) - \Delta\alpha_{\mathsf{had}}(q^2)} \qquad \Delta\alpha_{\mathsf{had}}(q^2) = -\frac{\alpha q^2}{3\pi} P \int\limits_{s_{\mathsf{ihr}}}^{\infty} \mathsf{d}s \, \frac{R_{\mathsf{had}}(s)}{\mathsf{s}(s - q^2)}$$


- Subtlety for very narrow $c\bar{c}$ and $b\bar{b}$ resonances (ω and ϕ perfectly fine)
 - \hookrightarrow Dyson series does not converge Jegerlehner
- Solution: take out resonance that is being corrected in Rhad in VP undressing
- How to match all of this on the lattice?
- Need to calculate all sorts of isospin-breaking (IB) corrections
 - $\hookrightarrow e^2$ (QED) and $\delta = m_u m_d$ (strong IB) corrections

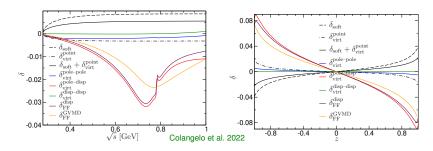
• Strong isospin breaking $\propto m_u - m_d$

• QED effects $\propto \alpha$

plots from Gülpers et al. 2018

- Diagram (f) F critical for consistent VP subtraction

	SD window		int window		LD window		full HVP	
	$\mathcal{O}(e^2)$	$\mathcal{O}(\delta)$	$\mathcal{O}(e^2)$	$\mathcal{O}(\delta)$	$\mathcal{O}(e^2)$	$\mathcal{O}(\delta)$	$\mathcal{O}(e^2)$	$\mathcal{O}(\delta)$
$\pi^0\gamma$	0.16(0)	_	1.52(2)	_	2.70(4)		4.38(6)	-
$\eta\gamma$	0.05(0)	-	0.34(1)	-	0.31(1)	-	0.70(2)	-
$ ho{-}\omega$ mixing	-	0.05(0)	-	0.83(6)	-	2.79(11)	-	3.68(17)
FSR (2 m)	0.11(0)	-	1.17(1)	-	3.14(3)	-	4.42(4)	-
$M_{\pi0}$ vs. $M_{\pi\pm}$ (2 π)	0.04(1)	-	-0.09(7)	-	-7.62(14)	-	-7.67(22)	-
FSR (K+K-)	0.07(0)	-	0.39(2)	-	0.29(2)	-	0.75(4)	-
kaon mass (K^+K^-)	-0.29(1)	0.44(2)	-1.71(9)	2.63(14)	-1.24(6)	1.91(10)	-3.24(17)	4.98(26)
kaon mass $(\bar{K}^0 K^0)$	0.00(0)	-0.41(2)	-0.01(0)	-2.44(12)	-0.01(0)	-1.78(9)	-0.02(0)	-4.62(23)
total	0.14(1)	0.08(3)	1.61(12)	1.02(20)	-2.44(16)	2.92(17)	-0.68(29)	4.04(39)
BMWc 2020	_	_	-0.09(6)	0.52(4)	-	-	-1.5(6)	1.9(1.2)
RBC/UKQCD 2018	-	-	0.0(2)	0.1(3)	-	-	-1.0(6.6)	10.6(8.0)
JLM 2021	_	-	-	-	-	-	-	3.32(89)


- Note: error estimates only refer to the effects included
 - \hookrightarrow additional channels missing (most relevant for SD and int window)
- Reasonable agreement with BMWc 2020, RBC/UKQCD 2018, and James, Lewis, Maltman 2021
 - \hookrightarrow if anything, the result would become even larger with pheno estimates

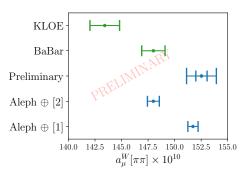
FAQ 2: can we trust radiative corrections/MC generators?

- Typical objection: can we really trust scalar QED in the MC generator?
- Report by Working Group on Radiative Corrections and Monte Carlo Generators for Low Energies
 - → Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data (0912.0749)
- Never just use scalar QED, include pion form factor wherever possible
 - → FsQED talk by G. Colangelo
- From the point of view of dispersion relations, this captures the leading infrared enhanced effects
- Existing NLO calculations do not point to (significant) center-of-mass-energy dependent effects Campanario et al. 2019
- Could there be subtleties in how the form factor is implemented or from pion rescattering?

FAQ 2: can we trust radiative corrections/MC generators?

- Test case: forward-backward asymmetry (C-odd)
- Large corrections found in GVMD model Ignatov, Lee 2022
- Can be reproduced using dispersion relations
 - \hookrightarrow effect still comes from infrared enhanced contributions
- Relevant effects for the C-even contribution? talk by G. Colangelo

FAQ 3: what about the τ data?


- Why did people stop using $\tau \to \pi \pi \nu_{\tau}$ data?
 - Better precision from e⁺e⁻
 - IB corrections not under sufficient control
- If this issue could be solved, would yield very useful cross check
 - → new data at least on spectrum from Belle II
- New developments from the lattice talk by M. Bruno at Edinburgh
 - \hookrightarrow re-using HLbL lattice data
- ullet Long-distance QED (G_{EM}) still taken from phenomenology for the time being
 - \hookrightarrow dispersive methods?

FAQ 3: what about the τ data?

talk by M. Bruno at Edinburgh

Window fever - au

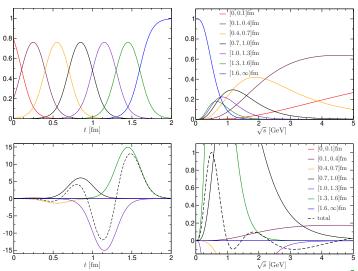
my PRELIMINARY analysis of exp. + latt. data only exp. errs, no attempt at estimating sys. errs for [1] and [2] LQCD syst. errs require further investigation/improvements

Isospin-breaking:

[1]: w/o $\rho\gamma$ mixing

[2]: w/ $\rho\gamma$ mixing

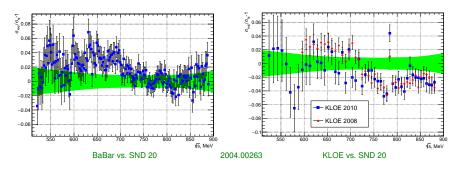
What is $\rho\gamma$? too much to say, too little time to explain everything...



▼ DEGLI STUDI

Where to go from here?

- For Run 2+3 result of E989 (spring 2023): lattice vs. e^+e^- will not be resolved
- ullet Aim for WP update: produce a lattice-QCD "method average" in analogy to e^+e^-
 - \hookrightarrow robust quantification of tension in intermediate window
- Beyond:
 - Lattice side: improved calculations (so far still only BMWc for full HVP), more windows talks by T. Blum, B. Toth
 - New e⁺e⁻ data talk by A. Denig
 - Scrutiny of radiative corrections talk by G. Colangelo
 - ullet Potentially au data to be resurrected as a viable cross check
 - ullet If all that does not change anything: new physics in e^+e^- data? talk by L. Di Luzio


Window quantities: the inverse Laplace problem

Colangelo et al. 2022

 \hookrightarrow localization in energy entails strong cancellation in Euclidean time

New data since WP20

- New data from SND experiment not yet included in WP20 number
- More $\pi\pi$ data to come from: CMD3, BESIII, BaBar, Belle II
- New data for 3π: BESIII, BaBar
- New data on inclusive region: BESIII (slight tension with pQCD)
- MUonE project: space-like HVP from μe scattering

2π channel: isospin breaking and ω mass

	$\chi^2/{ m dof}$	<i>p</i> -value	$ extit{M}_{\omega}$ [MeV]	10 3 $ imes$ Re ϵ_ω	δ_{ϵ} [$^{\circ}$]	10 10 $ imes$ $a_{\mu}^{\pi\pi}$ $ $ \leq 1 GeV
SND06	1.40	5.3%	781.49(32)(2)	2.03(5)(2)		499.7(6.9)(4.1)
	1.08	35%	782.11(32)(2)	1.98(4)(2)	8.5(2.3)(0.3)	497.8(6.1)(4.9)
CMD-2	1.18	14%	781.98(29)(1)	1.88(6)(2)		496.9(4.0)(2.3)
	1.01	45%	782.64(33)(4)	1.85(6)(4)	11.4(3.1)(1.0)	495.8(3.7)(4.2)
BaBar	1.14	5.7%	781.86(14)(1)	2.04(3)(2)		501.9(3.3)(2.0)
	1.14	5.5%	781.93(18)(4)	2.03(4)(1)	1.3(1.9)(0.7)	501.9(3.3)(1.8)
KLOE"	1.20	3.1%	781.81(16)(3)	1.98(4)(1)		491.8(2.1)(1.8)
	1.13	10%	782.42(23)(5)	1.95(4)(2)	6.1(1.7)(0.6)	490.8(2.0)(1.7)
BESIII	1.12	25%	782.18(51)(7)	2.01(19)(9)		490.8(4.8)(3.9)
	1.02	44%	783.05(60)(2)	1.99(19)(7)	17.6(6.9)(1.2)	490.3(4.5)(3.1)
SND20	2.93	3.3×10^{-7}	781.79(30)(6)	2.04(6)(3)		494.2(6.7)(9.0)
	1.87	4.1×10^{-3}	782.37(28)(6)	2.02(5)(2)	10.1(2.4)(1.4)	494.9(5.3)(3.1)

Colangelo et al. 2022

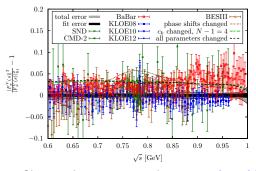
Mysteries in the fit:

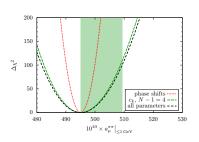
- Phase of the ρ - ω mixing parameter varies widely among experiments
- Resulting value of \emph{M}_{ω} at odds with $3\pi,\,\pi^0\gamma$ channel
- → hopefully forthcoming data will shed some light

Relation to global electroweak fit

Hadronic running of α

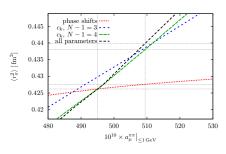
$$\Delta lpha_{
m had}^{(5)}(\emph{M}_{\emph{Z}}^2) = rac{lpha \emph{M}_{\emph{Z}}^2}{3\pi} \emph{P} \int \limits_{s_{
m thr}}^{\infty} {
m d}s rac{\emph{R}_{
m had}(s)}{s(\emph{M}_{\emph{Z}}^2 - s)}$$

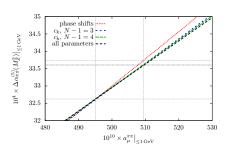

- $\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$ enters as input in global electroweak fit
- ullet Changes in $R_{
 m had}(s)$ have to occur at low energies, $\lesssim 2\,{
 m GeV}$ Crivellin et al. 2020, Keshavarzi et


al. 2020, Malaescu et al. 2020

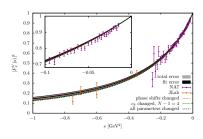
- This seems to happen for BMWc calculation (translated from the space-like), with only moderate increase of tensions in the electroweak fit ($\sim 1.8\sigma \to 2.4\sigma$)
 - → need large changes in low-energy cross section
- Similar conclusion from Mainz 2022 calculation of hadronic running

Changing the $\pi\pi$ cross section below 1 GeV


Colangelo, MH, Stoffer 2020


- Changes in 2π cross section **cannot be arbitrary** due to analyticity/unitarity constraints, but increase is actually possible
- Three scenarios:
 - **1** "Low-energy" scenario: $\pi\pi$ phase shifts
 - "High-energy" scenario: conformal polynomial
 - Combined scenario

 \hookrightarrow 2. and 3. lead to uniform shift, 1. concentrated in ρ region


Correlations

Correlations with other observables:

- Pion charge radius $\langle r_{\pi}^2 \rangle$
 - \hookrightarrow significant change in scenarios 2. and 3.
 - \hookrightarrow can be tested in lattice QCD
- ullet Hadronic running of lpha
- Space-like pion form factor

What can we conclude about the difference at the moment?

(4) Window quantities

(5) Conclusions

Some insights from the window quantities

- using form of weight functions:
 at least ~ 40% from above 1 GeV
- assumptions:
 - rather uniform shifts in low-energy $\pi\pi$ region
 - · no significant negative shifts

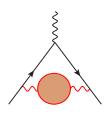
Conclusions

- window quantities and analyticity constraints point at an effect $\lesssim 8 \times 10^{-10}$ below 1 GeV, $\geq 6 \times 10^{-10}$ above 1 GeV
- more detailed analysis might be possible with additional windows and knowledge of correlations

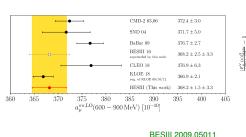
talk by P. Stoffer at Edinburgh

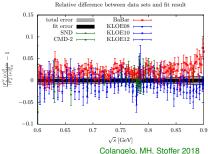
◆ロト ◆部 ト ◆注 ト ◆注 ト を目す からの

30


Summary and outlook

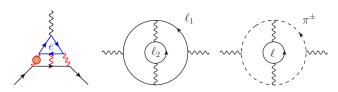
- Muon g 2: where do we stand?
 - E989 to improve experimental result by another factor 3


 → Run 6 with µ⁺ approved
 - For HLbL agreement between lattice and phenomenology


 → another factor 2 looks feasible
 - New e⁺e[−] data and lattice calculations forthcoming

 ⇔ window observables for sharper comparisons
 - For prospects see also Snowmass contribution 2203.15810
 - WP update in preparation, aimed for Run 2+3 result

Cross checks from analyticity and unitarity



- Uncovered an error in the covariance matrix of BESIII 16 (now corrected), all other data sets passed the tests

Merging procedure

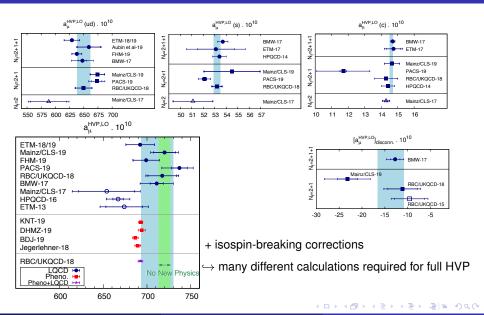
- How to deal with tensions?
- Errors systematics dominated
 - → scale factor not adequate/sufficient
- There was broad consensus to adopt conservative error estimates
- Merging procedure
 - Take average of central values from different analyses channel by channel (including analyticity/unitarity constraints)
 - In each channel: take biggest uncertainty from DHMZ/KNT, add half their difference as additional systematic effect
 - Exception: in 2π channel this additional systematic uncertainty taken as [fit w/o KLOE fit w/o BaBar]/2
 - Take interchannel correlations from DHMZ analysis
 - → covers tensions in the data and accounts for different methodologies for
 the combination of data sets

A note on higher-order hadronic effects

- Generic scaling of $\mathcal{O}(\alpha^4)$ effects: $\left(\frac{\alpha}{\pi}\right)^4 \simeq 3 \times 10^{-11}$
- ullet Enhancements (numerical or $\log rac{m_e}{m_\mu}$) can make such effects relevant Kurz et al. 2014
- NLO HLbL small Colangelo et al. 2014
- Mixed hadronic and leptonic contributions with inner electron potentially dangerous
 - \hookrightarrow could affect LO HVP via radiation of e^+e^- pairs, but $\lesssim 1 \times 10^{-11}$ MH, Teubner 2022

Lattice QCD calculations of HVP

HVP from lattice QCD


$$a_{\mu}^{\text{HVP,LO}} = a_{\mu,\,\text{conn}}^{\text{HVP,LO}}(ud) + \sum_{q=s,c,b} a_{\mu,\,\text{conn}}^{\text{HVP,LO}}(q) + a_{\mu,\,\text{disc}}^{\text{HVP,LO}} + a_{\mu,\,\text{IB}}^{\text{HVP,LO}}$$

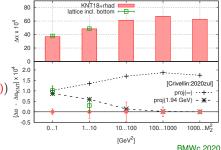
$$= 7116(184) \times 10^{-11}$$

- Basic differences to data-driven approach:
 - Calculation in space-like, not time-like kinematics
 - Decomposition by flavor, not hadronic channel
 - Disconnected diagrams and isospin breaking calculated as corrections
- WP discussion includes:
 - Detailed discussion of computational strategy (e.g., schemes for isospin breaking)
 - Comparisons of calculations available as of the deadline 31 March, 2020
 - Averages of subquantities and total HVP

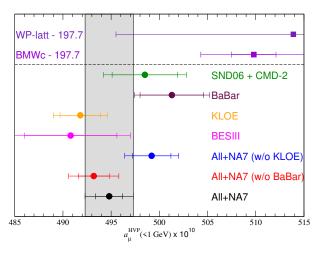
HVP from lattice QCD: averages

Hadronic running of α and global EW fit

	e^+e^- KNT, DHMZ	EW fit HEPFit	EW fit GFitter	guess based on BMWc
$\Delta lpha_{ m had}^{(5)}(\emph{M}_{\it Z}^2) imes 10^4$	276.1(1.1)	270.2(3.0)	271.6(3.9)	277.8(1.3)
difference to e^+e^-		-1.8σ	-1.1σ	$+1.0\sigma$


• Time-like formulation:

$$\Delta\alpha_{\mathsf{had}}^{(5)}(\textit{M}_{\textit{Z}}^2) = \frac{\alpha\textit{M}_{\textit{Z}}^2}{3\pi}\textit{P}\int\limits_{s_{\mathsf{thr}}}^{\infty} \mathsf{d}s \frac{\textit{R}_{\mathsf{had}}(s)}{s(\textit{M}_{\textit{Z}}^2 - s)}$$


Space-like formulation:

$$\Delta\alpha_{\rm had}^{(5)}(\textit{M}_{\textit{Z}}^2) = \frac{\alpha}{\pi}\hat{\Pi}(-\textit{M}_{\textit{Z}}^2) + \frac{\alpha}{\pi}\big(\hat{\Pi}(\textit{M}_{\textit{Z}}^2) - \hat{\Pi}(-\textit{M}_{\textit{Z}}^2)\big)$$

- Global EW fit
 - Difference between HEPFit and GFitter implementation mainly treatment of M_W
 - Pull goes into opposite direction

$\pi\pi$ contribution below 1 GeV

Assumption: suppose all changes occur in $\pi\pi$ channel below 1 GeV

$$\hookrightarrow extit{a}_{\mu}^{ ext{total}}[ext{WP20}] - extit{a}_{\mu}^{2\pi,<1\, ext{GeV}}[ext{WP20}] = 197.7 imes 10^{-10}$$

