$B_{d,s} \rightarrow \mu^+ \mu^- \gamma$ phenomenology – overview –

Diego Guadagnoli CNRS, LAPTh Annecy

The additional photon lifts chirality suppression

For light leptons: enhancement w.r.t. purely leptonic mode ee channel: enhancement is 5 orders of magnitude

The additional photon lifts chirality suppression

For light leptons: enhancement w.r.t. purely leptonic mode ee channel: enhancement is 5 orders of magnitude

• $B_s \to \ell \ell \gamma$ offers sensitivity to larger set of WCs than $B_s \to \ell \ell$ In particular $C_{9,10}$ (and primed), for high q^2

The additional photon lifts chirality suppression

For light leptons: enhancement w.r.t. purely leptonic mode ee channel: enhancement is 5 orders of magnitude

• $B_s \to \ell \ell \gamma$ offers sensitivity to larger set of WCs than $B_s \to \ell \ell$ In particular $C_{9,10}$ (and primed), for high q^2

• High- $q^2 B_s \rightarrow \mu\mu \ \gamma$ spectrum can be accessed from $B_s \rightarrow \mu\mu$ dataset. First LHCb analysis completed

The additional photon lifts chirality suppression

For light leptons: enhancement w.r.t. purely leptonic mode ee channel: enhancement is 5 orders of magnitude

- $B_s \to \ell \ell \gamma$ offers sensitivity to larger set of WCs than $B_s \to \ell \ell$ In particular $C_{9,10}$ (and primed), for high q^2
- High- $q^2 B_s \rightarrow \mu\mu \ \gamma$ spectrum can be accessed from $B_s \rightarrow \mu\mu$ dataset. First LHCb analysis completed
- With Run 3 (ightharpoonup hopefully comparable e and μ efficiencies), $B_s \to \mu \mu \ \gamma / B_s \to ee \ \gamma$ no more science fiction

 $B_s \rightarrow \mu\mu \ \gamma \ \text{from} \ B_s \rightarrow \mu\mu$

·

[Dettori, DG, Reboud, 2017]

Basic Idea

Extract $B_s \rightarrow \mu\mu \ \gamma$ from $B_s \rightarrow \mu\mu$ event sample, by enlarging $m_{\mu\mu}$ below B_s peak

.

[Dettori, DG, Reboud, 2017]

Basic Idea

Extract $B_s \to \mu\mu \ \gamma$ from $B_s \to \mu\mu$ event sample, by enlarging $m_{\mu\mu}$ below B_s peak

One can relate the $m_{_{\mu\mu}}$ energy imbalance to the energy of the additional, undetected

......

[Dettori, DG, Reboud, 2017]

Basic Idea

Extract $B_s \rightarrow \mu\mu \ \gamma$ from $B_s \rightarrow \mu\mu$ event sample, by enlarging $m_{\mu\mu}$ below B_s peak

- One can relate the $m_{\mu\mu}$ energy imbalance to the energy of the additional, undetected
- Essential precondition: controlling all other backgrounds

[Dettori, DG, Reboud, 2017]

Basic Idea

Extract $B_s \to \mu\mu \ \gamma$ from $B_s \to \mu\mu$ event sample, by enlarging $m_{\mu\mu}$ below B_s peak

- One can relate the $m_{\mu\mu}$ energy imbalance to the energy of the additional, undetected
- Essential precondition: controlling all other backgrounds

Approach merges the advantages of both decays:

Exploits rich and ever increasing $B_s \rightarrow \mu\mu$ dataset

[Dettori, DG, Reboud, 2017]

Basic Idea

Extract $B_s \to \mu\mu \ \gamma$ from $B_s \to \mu\mu$ event sample, by enlarging $m_{\mu\mu}$ below B_s peak

- One can relate the $m_{\mu\mu}$ energy imbalance to the energy of the additional, undetected
- Essential precondition: controlling all other backgrounds

Approach merges the advantages of both decays:

- Exploits rich and ever increasing $B_s \rightarrow \mu\mu$ dataset
- ... to access $B_s \rightarrow \mu\mu\gamma$, that probes flavour anomalies more thoroughly

Pros

• No need to reconstruct the γ (factor-of-20 loss in efficiency)

Pros

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes the high- q^2 region, where even a good γ detector is challenged
- ... and that is the most sensitive to $C_{9,10}$

Pros

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes the high- q^2 region, where even a good γ detector is challenged
- ... and that is the most sensitive to $C_{9,10}$
- Trigger & selection: muons only the cleanest particles at LHC

Pros

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes the high- q^2 region, where even a good γ detector is challenged
- ... and that is the most sensitive to $C_{9,10}$
- Trigger & selection: muons only the cleanest particles at LHC

Cons

Signal is a shoulder, not a peak, like several semilep. B decays

Pros

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes the high- q^2 region, where even a good γ detector is challenged
- ... and that is the most sensitive to $C_{9,10}$
- Trigger & selection: muons only the cleanest particles at LHC

Cons

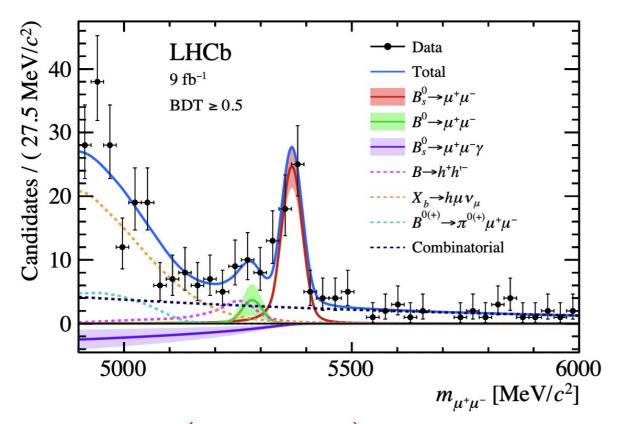
- Signal is a shoulder, not a peak, like several semilep. B decays
- Relatively (but not too) small q^2 range. Below (4.2 GeV)², $c\bar{c}$ pollution

Pros

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes the high- q^2 region, where even a good γ detector is challenged
- ... and that is the most sensitive to $C_{9,10}$
- Trigger & selection: muons only the cleanest particles at LHC

Cons

- Signal is a shoulder, not a peak, like several semilep. B decays
- Relatively (but not too) small q^2 range. Below (4.2 GeV)², $c\bar{c}$ pollution
- Trigger efficiency and reco somewhat below $B_s \to \mu\mu$ But better than full γ reco
- Mass resolution, O(50 MeV), crucial: could be more challenging at ATLAS / CMS
- Calibration not trivial no "analogous" channel



$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left(3.09^{+0.46}_{-0.43}^{+0.15}_{-0.11}\right) \times 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = \left(1.2^{+0.8}_{-0.7} \pm 0.1\right) \times 10^{-10} < 2.6 \times 10^{-10}$$

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{m_{\mu\mu} > 4.9 \, \text{GeV}} = (-2.5 \pm 1.4 \pm 0.8) \times 10^{-9} < 2.0 \times 10^{-9}$$

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{m_{\mu\mu} > 4.9 \, \text{GeV}} = (-2.5 \pm 1.4 \pm 0.8) \times 10^{-9} < 2.0 \times 10^{-9}$$

No significant signal for $B^0 \to \mu^+\mu^-$ and $B_s^0 \to \mu^+\mu^-\gamma$, upper limits at 95% First world limit on $B_s^0 \to \mu^+ \mu^- \gamma$ decay

 $BRy[4.0 \text{ GeV}, m_{Bs}]_{KMN}$ $\simeq 0.9 \cdot 10^{-9}$ The elephant in the room (f.f.'s)

Small E_{y}

[RM123, '15] [1st application (K_{t2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator

Small E_{y}

[RM123, '15] [1st application (K_{t2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator

Total width
$$\Gamma(E_{\gamma}^{\max}) = \Gamma_0 + \Gamma_1(E_{\gamma}^{\max}) \qquad \ell\ell'\gamma \text{ width,}$$
 where 0 or 1 γ

Small E_y

[RM123, '15] [1st application (K_{f2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator

$$\Gamma(E_{\gamma}^{\max}) = \Gamma_0 + \Gamma_1(E_{\gamma}^{\max}) \qquad \qquad \ell\ell'\gamma \text{ width,}$$
 whose ther 0 or 1 γ

$$\underset{V \rightarrow \infty}{\text{lim}} \left(\Gamma_0 - \Gamma_0^{\text{sQED}} \right) \ + \ \underset{V \rightarrow \infty}{\text{lim}} \left(\Gamma_0^{\text{sQED}} + \Gamma_1^{\text{sQED}} (E_\gamma^{\text{max}}) \right)$$

Small E_y

[RM123, '15] [1st application (K_{t2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator

$$\Gamma(E_{\gamma}^{\max}) = \Gamma_0 + \Gamma_1(E_{\gamma}^{\max}) \qquad \qquad \ell\ell'\gamma \text{ width,}$$
 whose the or 1 γ

$$\lim_{V \to \infty} \left(\Gamma_0 - \Gamma_0^{\mathrm{sQED}} \right) + \lim_{V \to \infty} \left(\Gamma_0^{\mathrm{sQED}} + \Gamma_1^{\mathrm{sQED}} (E_\gamma^{\mathrm{max}}) \right)$$

$$\operatorname{LQCD} O(\alpha)$$

$$\operatorname{Continuum,}$$

$$\operatorname{scalar-QED} O(\alpha)$$

$$\operatorname{scalar-QED} O(\alpha)$$

$$\operatorname{\ell\ell'} \text{ width}$$

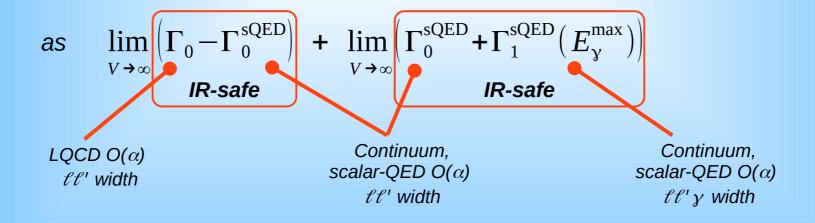
$$\operatorname{\ell\ell'} \gamma \text{ width}$$

Small E_y

[RM123, '15] [1st application (K_{t2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator

$$\Gamma(E_{\gamma}^{\max}) = \Gamma_0 + \Gamma_1(E_{\gamma}^{\max}) \qquad \qquad \ell\ell'\gamma \text{ width,}$$
 whose the or 1 γ



Small E_y

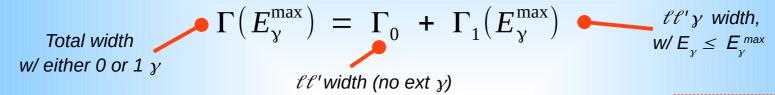
[RM123, '15] [1st application (K_{t2}), RM123, '17]

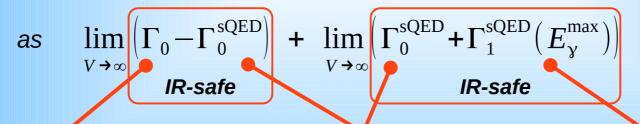
Novel method to define an IR-safe LQCD correlator

Calculate

LQCD $O(\alpha)$

ff' width





Requirement

E_χ small enough to justify scalar-QED approach

Continuum, Continuum, scalar-QED $O(\alpha)$ scalar-QED $O(\alpha)$ $\ell\ell'$ width $\ell\ell'\gamma$ width

f.f.'s at low q^2

within factorization

[Beneke-Bobeth-Wang, '20]

• For low $q^2 \le (6 \text{ GeV})^2$, $B_s \to \gamma^*$ f.f.'s can be calculated in a systematic expansion in $1/m_b$, $1/E_\gamma$

- For low $q^2 \le (6 \text{ GeV})^2$, $B_s \to \gamma^*$ f.f.'s can be calculated in a systematic expansion in $1/m_b$, $1/E_\gamma$
- In particular
 - LP (expressible in terms of the B-meson LCDA)
 - + $O(\alpha_s)$ corr's

[Beneke-Bobeth-Wang, '20]

- For low $q^2 \le (6 \text{ GeV})^2$, $B_s \to \gamma^*$ f.f.'s can be calculated in a systematic expansion in $1/m_b$, $1/E_\gamma$
- In particular
 - LP (\sim expressible in terms of the B-meson LCDA) + $O(\alpha_s)$ corr's
 - local NLP

similar to $B_u \to \ell \nu \gamma$

[Beneke-Bobeth-Wang, '20]

- For low $q^2 \le (6 \text{ GeV})^2$, $B_s \to \gamma^*$ f.f.'s can be calculated in a systematic expansion in $1/m_b$, $1/E_\gamma$
- In particular
 - LP (\sim expressible in terms of the B-meson LCDA) + $O(\alpha_s)$ corr's
 - local NLP
 - non-local NLP

similar to $B_u \to \ell \nu \gamma$

resonance paramet'n

[Beneke-Bobeth-Wang, '20]

- For low $q^2 \le (6 \text{ GeV})^2$, $B_s \to \gamma^*$ f.f.'s can be calculated in a systematic expansion in $1/m_b$, $1/E_\gamma$
- In particular
 - LP (\sim expressible in terms of the B-meson LCDA) + $O(\alpha_s)$ corr's
 - local NLP
 - non-local NLP
 - actually dominant contribution by far
 - escapes first-principle description

similar to $B_u \to \ell \nu \gamma$

resonance paramet'n

Amplitude structure

[Beneke-Bobeth-Wang, '20]

• Take the weak operators as $O_i \equiv J_i^{(1)}$. $J_i^{(q)}$ and i = 9,10 for definiteness (and simplicity)

• Take the weak operators as $O_i \equiv J_i^{(1)}$. $J_i^{(q)}$ and i = 9,10 for definiteness (and simplicity)

$$\overline{A} \propto \epsilon_{\mu}^{*} \left\{ \sum_{i} C_{i} \left[T_{i}^{\mu\nu} \left\langle \ell \bar{\ell} \right| J_{i\nu}^{(l)}(0) \right] 0 \right\}$$

$$T_i^{\mu\nu} \propto \operatorname{FT}_x\langle 0| T\{J_{\mathrm{em}}^{\mu}(x), J_i^{(q)\nu}(0)\}|B\rangle$$

4......

• Take the weak operators as $O_i \equiv J_i^{(1)}$. $J_i^{(q)}$ and i = 9,10 for definiteness (and simplicity)

$$\overline{A} \propto \epsilon_{\mu}^* \left\{ \sum_i C_i \left[T_i^{\mu\nu} \left\langle \ell \bar{\ell} \middle| J_{i\nu}^{(l)}(0) \middle| 0 \right\rangle \right. \\ \left. + S_{\nu}^{(i)} \operatorname{FT}_x \left\langle \ell \bar{\ell} \middle| T \left\{ J_{\mathrm{em}}^{\mu}(x), J_i^{(l)\nu}(0) \right\} \middle| 0 \right\rangle \right] \right\}$$

$$T_i^{\mu\nu} \propto \operatorname{FT}_x\langle 0| T\{J_{\mathrm{em}}^{\mu}(x), J_i^{(q)\nu}(0)\}|B\rangle$$

• Take the weak operators as $O_i \equiv J_i^{(1)}$. $J_i^{(q)}$ and i = 9,10 for definiteness (and simplicity)

$$\overline{A} \propto \epsilon_{\mu}^* \left\{ \sum_{i} C_i \left[T_i^{\mu\nu} \left\langle \ell \bar{\ell} \right| J_{i\nu}^{(l)}(0) \left| 0 \right\rangle \right. \right. \\ \left. + S_{\nu}^{(i)} \left. \operatorname{FT}_x \left\langle \ell \bar{\ell} \right| T \left\{ J_{\mathrm{em}}^{\mu}(x), J_i^{(l)\nu}(0) \right\} \left| 0 \right\rangle \right] \right\}$$

FSR: only $S_{\nu}^{(10)} \neq 0$ ($\propto m_{\ell}$) \implies tiny

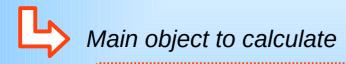
$$T_i^{\mu\nu} \propto \operatorname{FT}_x\langle 0| T\{J_{\mathrm{em}}^{\mu}(x), J_i^{(q)\nu}(0)\}|B\rangle$$

4......

• Take the weak operators as $O_i \equiv J_i^{(1)}$. $J_i^{(q)}$ and i = 9,10 for definiteness (and simplicity)

$$\overline{A} \propto \epsilon_{\mu}^* \left\{ \sum_{i} C_i \left[T_i^{\mu\nu} \left\langle \ell \bar{\ell} \right| J_{i\nu}^{(l)}(0) \left| 0 \right\rangle \right. \right. \\ \left. + S_{\nu}^{(i)} \left. \operatorname{FT}_x \left\langle \ell \bar{\ell} \right| T \left\{ J_{\mathrm{em}}^{\mu}(x), J_i^{(l)\nu}(0) \right\} \left| 0 \right\rangle \right] \right\}$$

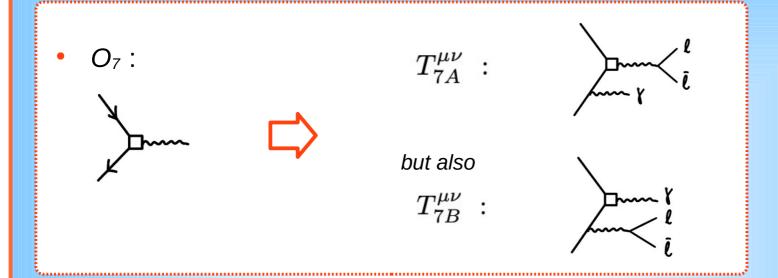
FSR: only $S_{\nu}^{(10)} \neq 0 \ (\propto m_{\ell}) \Longrightarrow tiny$



$$T_i^{\mu\nu} \propto \mathrm{FT}_x\langle 0| T\{J_{\mathrm{em}}^{\mu}(x), J_i^{(q)\nu}(0)\}|B\rangle$$

Notes on structure

[Beneke-Bobeth-Wang, '20]



Notes on structure

 $N^{(1)}$

[Beneke-Bobeth-Wang, '20]

but also $T_{7B}^{\mu
u}\,:$

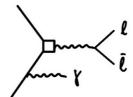
Notes on structure

 Δm

[Beneke-Bobeth-Wang, '20]

O₇ :

 $T_{7A}^{\mu\nu}$:



but also

 $T_{7B}^{\mu
u}$

•
$$T_i^{\mu\nu} = T_i^{\mu\nu}(k,q) \propto (g^{\mu\nu}k \cdot q - q^{\mu}k^{\nu}) (F_L^{(i)} - F_R^{(i)}) + i\varepsilon^{\mu\nu qk} (F_L^{(i)} + F_R^{(i)}) = F_A^{(i)}$$

• For
$$\mathsf{E}_{\scriptscriptstyle \gamma} \gg \Lambda_{\scriptscriptstyle \mathrm{QCD}}$$
 $F_R^{(i)} \sim \frac{\Lambda_{\scriptscriptstyle \mathrm{QCD}}}{E_{\scriptscriptstyle \gamma}} F_L^{(i)}$ \Longrightarrow $F_A^{(i)} pprox F_V^{(i)}$

Two-step matching onto SCET

[Beneke-Bobeth-Wang, '20]

• Decoupling of h modes $O(m_b^2)$ in QCD \rightarrow SCET, matching

$$egin{aligned} \sum_{i}^{9} \; \eta_{i} C_{i} \; T_{i}^{\mu
u} \; &= \; \sum_{i}^{9} \; C_{i} H_{i}(q^{2}) \cdot \ & \quad \cdot \mathrm{FT}_{x} \langle 0 | \; T\{J_{\mathrm{em,SCET_{I}}}^{\mu}(x), \left[\overline{q}_{\mathrm{hc}} \gamma_{L}^{
u \perp} h_{v}\right](0)\} | B
angle \end{aligned}$$

Two-step matching onto SCET

[Beneke-Bobeth-Wang, '20]

• Decoupling of h modes $O(m_b^2)$ in QCD \rightarrow SCET, matching

$$egin{aligned} \sum_{i}^{9} \; \eta_{i} C_{i} \; T_{i}^{\mu
u} \; &= \; \sum_{i}^{9} \; C_{i} H_{i}(q^{2}) \cdot \\ & \; \cdot \mathrm{FT}_{x} \langle 0 | \; T\{J_{\mathrm{em,SCET_{I}}}^{\mu}(x), \left[\overline{q}_{\mathrm{hc}} \gamma_{L}^{
u\perp} h_{v}\right](0)\} | B
angle \end{aligned}$$

separation $x \sim 1/\sqrt{E_{\gamma}\Lambda_{\rm QCD}}$ i.e. intermediate propagator is hc

Two-step matching onto SCET

[Beneke-Bobeth-Wang, '20]

• Decoupling of h modes $O(m_b^2)$ in QCD \rightarrow SCET, matching

$$egin{aligned} \sum_{i}^{9} \; \eta_{i} C_{i} \; T_{i}^{\mu
u} \; &= \; \sum_{i}^{9} \; C_{i} H_{i}(q^{2}) \cdot \ & \cdot \operatorname{FT}_{x} \langle 0 | \; T\{J_{\mathrm{em,SCET_{I}}}^{\mu}(x), \left[\overline{q}_{\mathrm{hc}} \gamma_{L}^{
u\perp} h_{v}\right](0)\} | B
angle \end{aligned}$$

separation $x \sim 1/\sqrt{E_{\gamma}\Lambda_{\rm QCD}}$ i.e. intermediate propagator is hc

• Decoupling of hc modes $O(E_y \Lambda_{QCD}; m_b \Lambda_{QCD})$ in $SCET_l \rightarrow SCET_{ll}$

Resonances

[Beneke-Bobeth-Wang, '20]

- $T_{7B}^{\mu\nu}$ leads to \overline{A}_{res}
 - standard spectral repr. (à la BW)
 - formally power-suppressed

hence inclusion won't lead to double counting of some short-distance contributions

Concluding comments

[Beneke-Bobeth-Wang, '20]

- Dominant parametric error, $^{+70\%}_{-30\%}$, from λ_B (as expected)
- Also continuum contribution gives large error (± 35-45%)

Concluding comments

[Beneke-Bobeth-Wang, '20]

- Dominant parametric error, $^{+70\%}_{-30\%}$, from λ_B (as expected)
- Also continuum contribution gives large error (± 35-45%)
- Large NLP + little phase space available + large λ_B dependence challenge a precise $B_s \rightarrow \mu \mu \gamma$ prediction at low q^2

Concluding comments

.......

[Beneke-Bobeth-Wang, '20]

- Dominant parametric error, $^{+70\%}_{-30\%}$, from λ_B (as expected)
- Also continuum contribution gives large error (± 35-45%)
- Large NLP + little phase space available + large λ_B dependence challenge a precise $B_s \to \mu \mu \gamma$ prediction at low q^2
- Prediction

$$\langle \mathcal{B} \rangle_{[4m_{\mu}^2, 6.0]} = (12.51^{+3.83}_{-1.93}) \cdot 10^{-9}, \quad \langle \mathcal{B} \rangle_{[2.0, 6.0]} = (0.30^{+0.25}_{-0.14}) \cdot 10^{-9}$$

i.e. ϕ region gives 97.6% of the BR

f.f.'s within LCSRs

[Janowski, Pullin, Zwicky, '21]

see also [Pullin, Zwicky, '21; Albrecht et al., 19]

Calculation includes: NLO at twist 1&2; LO at twist 3; partial twist 4

f.f.'s within LCSRs

a.......

[Janowski, Pullin, Zwicky, '21] see also [Pullin, Zwicky, '21; Albrecht et al., 19]

- Calculation includes: NLO at twist 1&2; LO at twist 3; partial twist 4
- f.f.'s fitted to a z-expansion ansatz

$$F_n^{\bar{B}\to\gamma}(q^2) = \frac{1}{1 - q^2/m_R^2} \left(\alpha_{n0} + \sum_{k=1}^N \alpha_{nk} (z(q^2) - z(0))^k \right)$$

f.f.'s within LCSRs

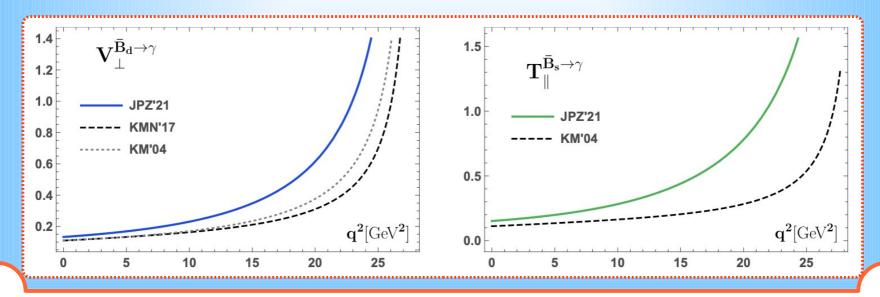
a......

[Janowski, Pullin, Zwicky, '21] see also [Pullin, Zwicky, '21; Albrecht et al., 19]

- Calculation includes: NLO at twist 1&2; LO at twist 3; partial twist 4
- f.f.'s fitted to a z-expansion ansatz

$$F_n^{\bar{B}\to\gamma}(q^2) = \frac{1}{1 - q^2/m_R^2} \left(\alpha_{n0} + \sum_{k=1}^N \alpha_{nk} (z(q^2) - z(0))^k \right)$$

 Comparison with the quark-model f.f. parameterizations in [Melikhov, Nikitin, '04; Kozachuk, Melikhov, Nitikin, '17]



Some specific observables

Guidelines

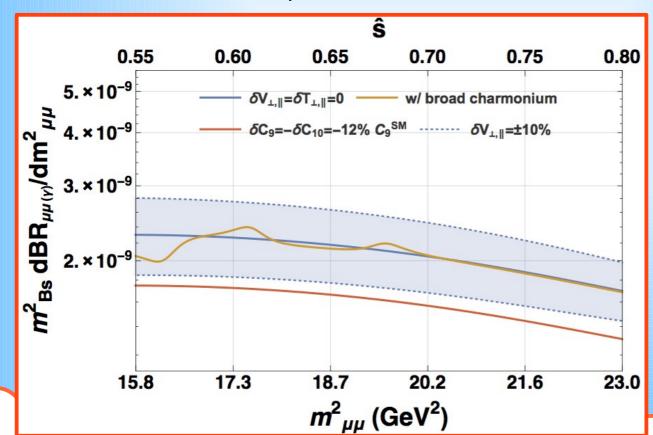
- focus on high q²
- minimise dependence on LD physics

$B_s \rightarrow \mu\mu\gamma$ spectrum

• In [DG, Reboud, Zwicky, '17] resonant ansatz used to rewrite low-q² BR in terms of the measured BR($B_s \rightarrow \phi \gamma$)

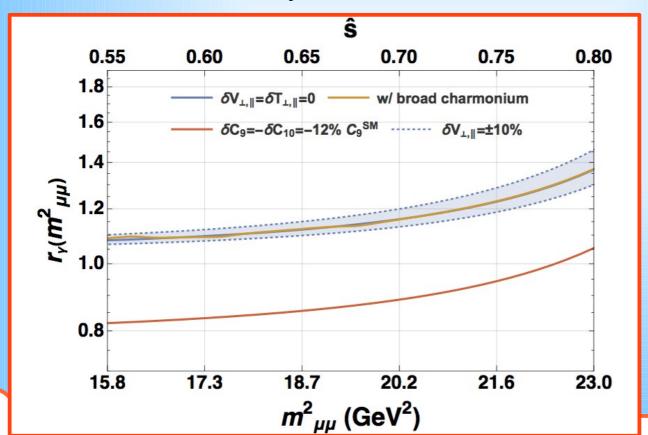
$B_s \rightarrow \mu\mu\gamma$ spectrum

- In [DG, Reboud, Zwicky, '17] resonant ansatz used to rewrite low-q² BR in terms of the measured BR($B_s \rightarrow \phi \gamma$)
- Then main focus on large-q² region, above narrow charmonium.
 Broad-charmonium pollution estimated with similar resonant ansatz



$B_s \rightarrow \mu\mu\gamma$ spectrum

- In [DG, Reboud, Zwicky, '17] resonant ansatz used to rewrite low-q² BR in terms of the measured BR($B_s \rightarrow \phi \gamma$)
- Then main focus on large-q² region, above narrow charmonium.
 Pollution substantially tamed in suitable ratio observable



$$r_{\gamma} \equiv \frac{dBR(B_s \rightarrow \mu \mu \gamma)/dq^2}{dBR(B_s \rightarrow e e \gamma)/dq^2}$$

$B_s \rightarrow \mu\mu\gamma$ effective lifetime

Million (1977)

Natural exp observable: untagged rate

[de Bruyn et al., '12]

$$\langle \Gamma(B_s(t) \to f) \rangle \equiv \Gamma(B_s^0(t) \to f) + \Gamma(\bar{B}_s^0(t) \to f)$$

$B_s \rightarrow \mu\mu\gamma$ effective lifetime

Natural exp observable: untagged rate

[de Bruyn et al., '12]

$$\langle \Gamma(B_s(t) \to f) \rangle \equiv \Gamma(B_s^0(t) \to f) + \Gamma(\bar{B}_s^0(t) \to f)$$

Recalling the time dependence of the respective |amplitudes|2

$$|\vec{\mathcal{A}}_f(t)|^2 = \frac{e^{-\Gamma_s t}}{2} \left[\left(|\mathcal{A}_f|^2 + |q/p|^2 |\bar{\mathcal{A}}_f|^2 \right) \cosh(\Delta \Gamma_s t/2) \pm \left(|\mathcal{A}_f|^2 - |q/p|^2 |\bar{\mathcal{A}}_f|^2 \right) \cos(\Delta M_s t) \right]$$

$$- 2\operatorname{Re}\left(q/p \,\bar{\mathcal{A}}_f \mathcal{A}_f^* \right) \sinh(\Delta \Gamma_s t/2) \mp 2\operatorname{Im}\left(q/p \,\bar{\mathcal{A}}_f \mathcal{A}_f^* \right) \sin(\Delta M_s t)$$

$B_s \rightarrow \mu \mu \gamma$ effective lifetime

Natural exp observable: untagged rate

[de Bruyn et al., '12]

$$\langle \Gamma(B_s(t) \to f) \rangle \equiv \Gamma(B_s^0(t) \to f) + \Gamma(\bar{B}_s^0(t) \to f)$$

Recalling the time dependence of the respective |amplitudes|2

$$|\vec{\mathcal{A}}_f(t)|^2 = \frac{e^{-\Gamma_s t}}{2} \left[\left(|\mathcal{A}_f|^2 + |q/p|^2 |\bar{\mathcal{A}}_f|^2 \right) \cosh(\Delta \Gamma_s t/2) \pm \left(|\mathcal{A}_f|^2 - |q/p|^2 |\bar{\mathcal{A}}_f|^2 \right) \cos(\Delta M_s t) \right]$$

$$- 2\operatorname{Re}\left(q/p \,\bar{\mathcal{A}}_f \mathcal{A}_f^* \right) \sinh(\Delta \Gamma_s t/2) \mp 2\operatorname{Im}\left(q/p \,\bar{\mathcal{A}}_f \mathcal{A}_f^* \right) \sin(\Delta M_s t)$$

yields the following quantity sensitive to new CPV

$$A_{\Delta\Gamma_s}^f = \frac{-2\int_{PS} \operatorname{Re}\left(q/p\,\bar{\mathcal{A}}_f \mathcal{A}_f^*\right)}{\int_{PS} \left(|\mathcal{A}_f|^2 + |q/p|^2|\bar{\mathcal{A}}_f|^2\right)}$$

$B_s \rightarrow \mu\mu\gamma$ effective lifetime

Natural exp observable: untagged rate

[de Bruyn et al., '12]

$$\langle \Gamma(B_s(t) \to f) \rangle \equiv \Gamma(B_s^0(t) \to f) + \Gamma(\bar{B}_s^0(t) \to f)$$

Recalling the time dependence of the respective |amplitudes|2

$$|\vec{\mathcal{A}}_f(t)|^2 = \frac{e^{-\Gamma_s t}}{2} \Big[\Big(|\mathcal{A}_f|^2 + |q/p|^2 |\bar{\mathcal{A}}_f|^2 \Big) \cosh(\Delta \Gamma_s t/2) \pm \Big(|\mathcal{A}_f|^2 - |q/p|^2 |\bar{\mathcal{A}}_f|^2 \Big) \cos(\Delta M_s t)$$

$$- 2 \operatorname{Re} \Big(q/p \,\bar{\mathcal{A}}_f \mathcal{A}_f^* \Big) \sinh(\Delta \Gamma_s t/2) \mp 2 \operatorname{Im} \Big(q/p \,\bar{\mathcal{A}}_f \mathcal{A}_f^* \Big) \sin(\Delta M_s t)$$

yields the following quantity sensitive to new CPV

$$A_{\Delta\Gamma_s}^f = \frac{-2\int_{PS} \operatorname{Re}\left(q/p\,\bar{\mathcal{A}}_f \mathcal{A}_f^*\right)}{\int_{PS} \left(|\mathcal{A}_f|^2 + |q/p|^2|\bar{\mathcal{A}}_f|^2\right)}$$

 A_{ΔΓ} can be extracted from (an accurate measurement of) the effective lifetime

- $A_{\Delta\Gamma}$ looks like a natural "ratio-of-amplitudes-squared" observable
 - With some luck, new CP phases may sizeably "misalign" numerator/denominator w.r.t. SM

• $A_{\Delta\Gamma}$ looks like a natural "ratio-of-amplitudes-squared" observable

With some luck, new CP phases may sizeably "misalign" numerator/denominator w.r.t. SM

... while ratio will still (partly) cancel hadr. matrix elem. dependence

- A_{ΔΓ} looks like a natural "ratio-of-amplitudes-squared" observable
 With some luck, new CP phases may sizeably "misalign" numerator/denominator w.r.t. SM
 - ... while ratio will still (partly) cancel hadr. matrix elem. dependence
- NP with non-standard CPV less constrained than NP with CKM CPV
 - (For NP with non-standard CPV, also constraints on Re(WCs) get looser)

Identify NP scenarios (within WET) accounting for the anomalies
 & with large CPV on top

(Wealth of $b \rightarrow s$ data still under-constraining for WC shifts w/ large non-CKM weak phases.)

Scenario	$C_7^{ m NP}$	$C_9^{ m NP}$	$C_{10}^{ m NP}$	
C_7	0.02 - 0.13i	0	0	
C_9	0	-1.0 - 0.9i	0	
C_{10}	0	0	1.0 + 1.4i	
C_{LL}	0	-0.7 - 1.4i	0.7 + 1.4i	

Strategy

Identify NP scenarios (within WET) accounting for the anomalies
 & with large CPV on top

(Wealth of $b \rightarrow s$ data still under-constraining for WC shifts w/ large non-CKM weak phases.)

Scenario	$C_7^{ m NP}$	$C_9^{ m NP}$	$C_{10}^{ m NP}$	
C_7	0.02 - 0.13i	0	0	
C_9	0	-1.0 - 0.9i	0	
C_{10}	0	0	1.0 + 1.4i	
C_{LL}	0	-0.7 - 1.4i	0.7 + 1.4i	

¢......

- Survey $A_{A\Gamma}$ sensitivity to these scenarios
 - for both low and high q²
 - taking into account f.f. & resonance-modelling errors

$A_{\Delta\Gamma}$ at high q^2

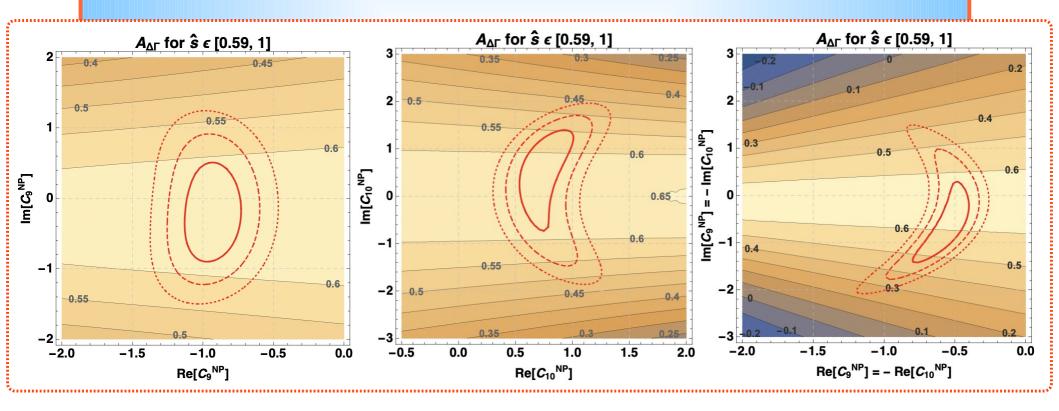
[Carvunis et al., '21]

• Consider the range $s \in [(4.1 \text{ GeV})^2, m_{Bs}^2] = [0.59, 1] m_{Bs}^2$

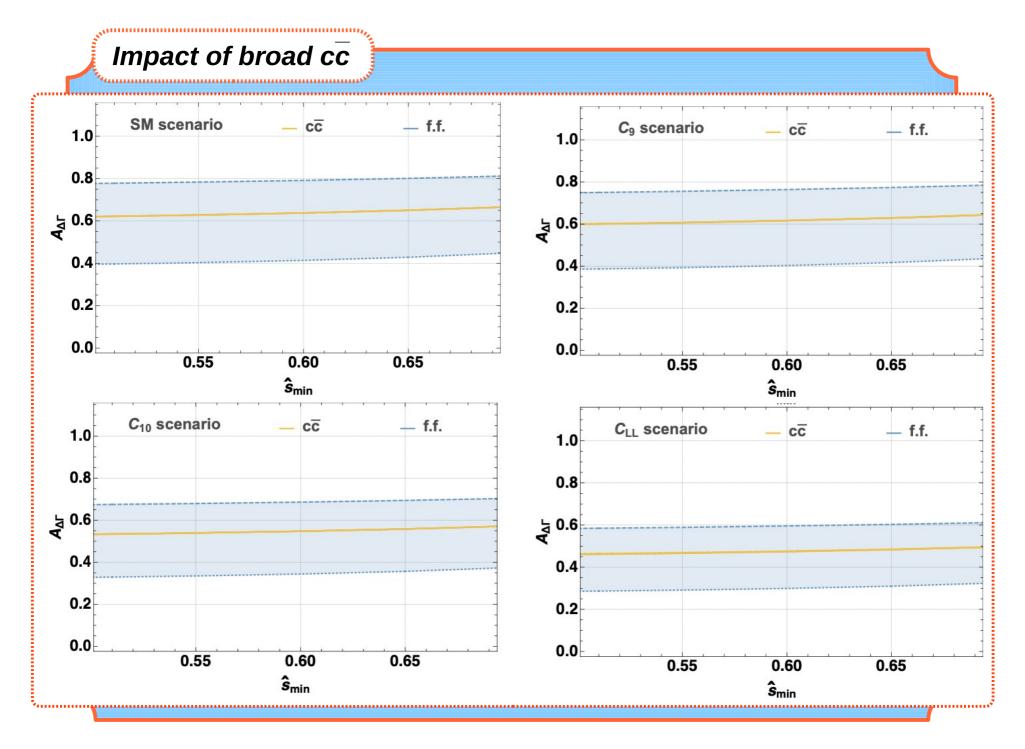
We set FSR to 0.

We keep ISR-FSR interference (not subtracted by PHOTOS, but small)

Size of effects $\leq 30\%$ (mostly C_9 , C_{10} , C_{LL})



D. Guadagnoli, FCCP2022, Capri, 22-24 September, 2022



D. Guadagnoli, FCCP2022, Capri, 22-24 September, 2022

• Bottom line: broad $c\bar{c}$ has surprisingly small impact on $A_{\Delta\Gamma}$

But broad- $c\bar{c}$ shift to C_9 typically O(5%) – and with random phase

Far from obvious why such a small impact on $A_{\Delta\Gamma}$

• Bottom line: broad $c\bar{c}$ has surprisingly small impact on $A_{\Delta\Gamma}$

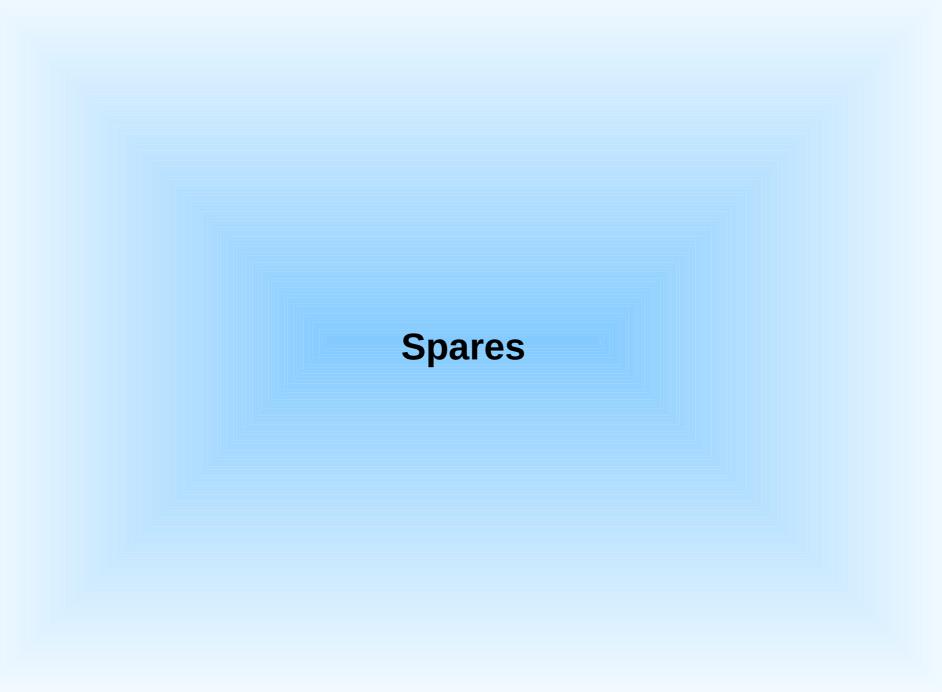
But broad- $c\bar{c}$ shift to C_9 typically O(5%) – and with random phase

Far from obvious why such a small impact on $A_{\Delta\Gamma}$

- Closer look (App. D for an analytic understanding)
 Cancellation is a conspiracy between
 - Complete dominance of contributions quadratic in C_9 and C_{10}
 - Multiplying f.f.'s F_V , $F_A \in \mathbb{R}$
 - Broad cc can be treated as small modif. of (numerically large) C9

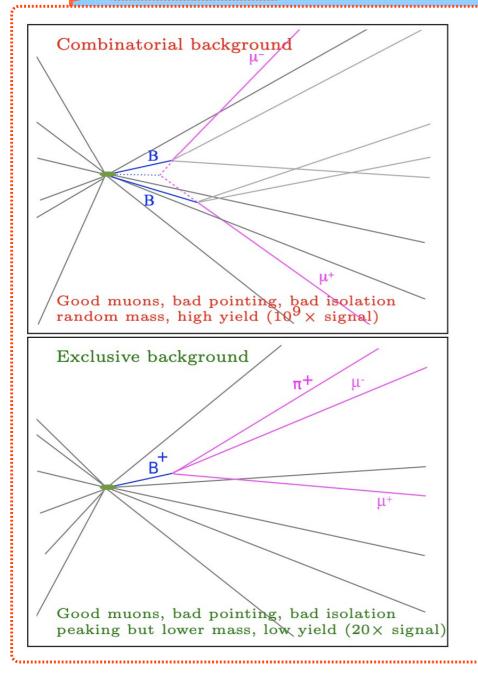
Ease cancellations between num & den in $A_{\Delta\Gamma}$

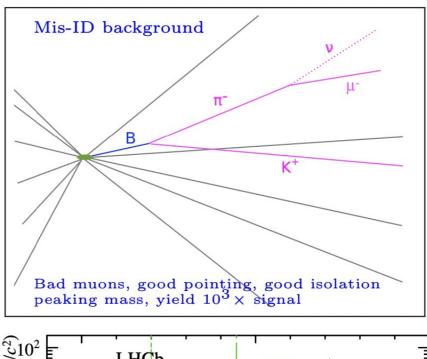
- Low impact of broad cc encouraging, given that this systematics inherently escapes a rigorous description
- f.f. uncertainty, even if still large, in principle "reducible"
- Maybe worthwhile to look for more observables with such properties

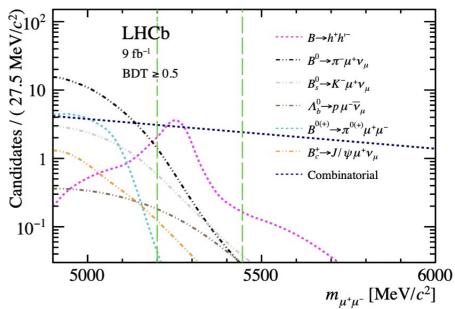


Im shifts to WCs: how large?

Pre-Moriond 20		ond 202	1	Post-Moriond 2021		1	
Scenario		Best-fit	Pull	<i>p</i> -value	Best-fit	Pull	<i>p</i> -value
C_7	${ m I\!R}$	-0.0079	0.58σ	0.11%	-0.0079	0.57σ	0.12%
	${\mathbb C}$	-0.0045 - 0.056 i	0.61σ	0.11%	-0.0044 - 0.056 i	0.61σ	0.11%
C_9	${ m I\!R}$	-0.97	6.4σ	10.0%	-0.93	6.7σ	12.0%
	${\mathbb C}$	-0.98 - 0.22i	6.1σ	9.4%	-0.93 - 0.25i	6.4σ	12.0%
C_{10}	${ m I\!R}$	0.72	5.8σ	6.1%	0.68	6.0σ	5.7%
	${\mathbb C}$	0.80 + 0.74i	5.6σ	6.0%	0.76 + 0.75 i	5.8σ	5.6%
C_{LL}	${ m I\!R}$	-1.1	6.9σ	18.0%	-0.96	7.0σ	16.0%
	${\mathbb C}$	-1.2-1.5i	6.7σ	18.0%	-1.1-1.4i	6.8σ	16.0%
C_{LR}	${ m I\!R}$	0.34	1.2σ	0.13%	0.28	1.1σ	0.09%
	${\mathbb C}$	0.34 + 0.032i	0.74σ	0.11%	0.28 + 0.017 i	0.59σ	0.08%
C_7'	${ m I\!R}$	0.004	0.28σ	0.12%	0.005	0.29σ	0.07%
	${\mathbb C}$	0.004 - 0.001i	0.05σ	0.10%	0.005 - 0.0003 i	0.05σ	0.06%
C_9'	${ m I\!R}$	0.14	0.74σ	0.13%	0.0044	0.06σ	0.09%
	${\mathbb C}$	0.13 + 0.24i	0.54σ	0.12%	0.0012 + 0.2i	0.24σ	0.08%
C_{10}^{\prime}	${ m I\!R}$	-0.18	1.7σ	0.14%	-0.09	0.81σ	0.08%
	${\mathbb C}$	-0.20-0.14i	1.3σ	0.13%	-0.063 - 0.11i	0.45σ	0.07%
C_{RL}	${ m I\!R}$	0.22	1.5σ	0.17%	0.088	0.23σ	0.07%
	${\mathbb C}$	0.24 + 0.40i	1.3σ	0.16%	0.085 + 0.32 i	0.40σ	0.07%
C_{RR}	${ m I\!R}$	-0.37	1.4σ	0.17%	-0.28	1.1σ	0.09%
	${\mathbb C}$	-0.37 - 0.003 i	0.93σ	0.15%	-0.28 - 0.004 i	0.65σ	0.08%







Radiative leptonic f. f.'s in LQCD

Large E_y

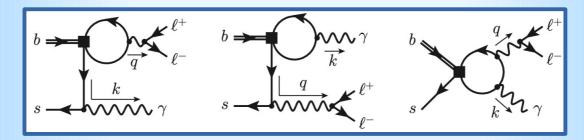
 The required correlator (weak & e.m. current insertion between a B and the vac) has always the desired large-Euclidean-t behavior
 [Kane, Lehner, Meinel, Soni, '19]

Note that this is non-trivial - e.g. it doesn't seem to hold if there are hadronic final states along with the γ

• However, the low-q² spectrum of $B_s \to \mu\mu \gamma$ is dominated by resonant contributions (~98% of the BR), that LQCD is unable to capture

NLP

- Three sources
 - coupling of γ to b quark
 - power corr's to SCET₁ correlator at tree level
 - annihilation-type insertions of 4q operators 🖒 local



- Two soft f.f.'s
 - $\xi(E_{\gamma})$: computable as in $B_u \to \ell \vee \gamma$ [Beneke-Rohrwild, '11]
 - For B-type contributions: $\tilde{\xi}(E_y)$ Its Im develops resonances, thus escaping a factorization description

Impact of broad cc

[Carvunis et al., '21]

Parameterize the effect most generally (e.g. discussion in [Lyon, Zwicky, '14])

$$C_9 \to C_9 - \frac{9\pi}{\alpha^2} \bar{C} \sum_{V} |\eta_V| e^{i\delta_V} \frac{\hat{m}_V \mathcal{B}(V \to \mu^+ \mu^-) \hat{\Gamma}_{\text{tot}}^V}{\hat{q}^2 - \hat{m}_V^2 + i\hat{m}_V \hat{\Gamma}_{\text{tot}}^V}$$

- $|\eta_V| \in [1, 3] \& \delta_V \in [0, 2\pi)$ (uniformly and independently for the 5 resonances)
- for $s_{min} \in [0.5, 0.7]$ m_{Bs}^2 $\begin{cases} s_{\psi(2S), \psi(3770), \psi(4040), \psi(4160), \psi(4415)} \\ = \{0.47, 0.49, 0.57, 0.61, 0.68\} \end{cases}$
- for all TH scenarios

- We vary (JPZ) f.f.'s with uncorrelated normal distrib's around their errors

 Resulting f.f. error by far dominant w.r.t. cc
 - Broad $c\bar{c}$ only shifts C_9 \Longrightarrow efficient cancellations possible
 - f.f.'s enter in different ways (all numerically relevant) for the different WC combinations
- In short
 - f.f. error still too important to resolve between TH scenarios
 - Yet, dominance of jointly C_9 & C_{10} implies high sensitivity to C_{LL} could be resolvable with \sim half the current f.f. error