Model independent analysis for B anomalies

Nazila Mahmoudi

Lyon University & CERN

Thanks to T. Hurth, S. Neshatpour and D. Martinez Santos

Workshop on "Flavour Changing and Conserving Processes", Capri, 22-24 Sep. 2022

Introduction	Observables	Global fits	Conclusion
●000	000000000	0000000	O
$b \rightarrow s \ell \ell$ measurements			

Impressive effort in studying $b \rightarrow s\ell\ell$ transitions at LHCb, but also ATLAS, CMS and Belle, with the measurement of a large number of independent branching ratios and angular observables, ratios,...

 $B \rightarrow K \mu^+ \mu^-, \ B \rightarrow K^+ e^+ e^-, \ B \rightarrow K^* \mu^+ \mu^- \ (F_L, \ A_{FB}, \ S_i, \ P_i), \ B_s \rightarrow \phi \mu^+ \mu^-, \ \dots$

Several small deviations from the SM predictions...

Introduction	Observables	Global fits	Conclusion
0●00	000000000	00000000	O
How to make sense of all	the data?		

We are in Capri, so let's prepare Limonchello!

Introduction	Observables	Global fits	Conclusion
0●00	000000000	00000000	O
How to make sense of all	the data?		

We are in Capri, so let's prepare Limonchello!

Introduction	Observables	Global fits	Conclusion
0●00	000000000	00000000	
How to make sense of all	the data?		

We are in Capri, so let's prepare Limonchello!

Model-independent approach

\downarrow

gives us the ingredients C_9 , a bit of C_{10} ,...

Introduction	Observables	Global fits	Conclusion
0000	000000000	00000000	O
How to make sense	of all the data?		

We are in Capri, so let's prepare Limonchello!

Model-independent approach

\downarrow

gives us the ingredients C_9 , a bit of C_{10} ,...

Simplified models

We are in Capri, so let's prepare Limonchello!

Model-independent approach

\downarrow

gives us the ingredients C_9 , a bit of C_{10} ,...

Simplified models

UV-complete theory

The real model

Introduction 00●0	Observables 000000000	Global fits 00000000	Conclusion O
Theoretical framewor	k		
Effective field the	ory		
$\mathcal{H}_{ ext{eff}} =$	$-\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\Big(\sum_{i=1\cdots 10,S,P}$	$(C_i(\mu)\mathcal{O}_i(\mu)+C_i'(\mu)\mathcal{O}_i'(\mu)$	u))))
Operator set for $b ightarrow$	s transitions:		
b 4-quark operators b s	chromomagnetic dipole operator	electromagnetic dipole operator	semileptonic operators
O ₁₆	$\mathcal{O}_{\mathbf{s}}$	\mathcal{O}_7	$b \xrightarrow{\mathcal{O}_{9,10}} s$

ā $\mathcal{O}_{1,2} \propto (\bar{s}\Gamma_{\mu}c)(\bar{c}\Gamma^{\mu}b) \qquad \mathcal{O}_{8} \propto (\bar{s}\sigma^{\mu\nu}T^{a}P_{R})G^{a}_{\mu\nu} \qquad \mathcal{O}_{7} \propto (\bar{s}\sigma^{\mu\nu}P_{R})F^{a}_{\mu\nu} \qquad \mathcal{O}^{\ell}_{9} \propto (\bar{s}\gamma^{\mu}b_{L})(\bar{\ell}\gamma_{\mu}\ell)$ $\mathcal{O}_{3,4} \propto (\bar{s}\Gamma_{\mu}b)\sum_{q}(\bar{q}\Gamma^{\mu}q)$

 $\mathcal{O}_{10}^{\ell} \propto (\bar{s}\gamma^{\mu}b_{L})(\bar{\ell}\gamma_{\mu}\gamma_{5}\ell)$ + the chirality flipped counter-parts of the above operators, \mathcal{O}'_i

Wilson coefficients:

The Wilson coefficients are calculated perturbatively and are process independent. SM contributions known to NNLL (Bobeth, Misiak, Urban '99; Misiak, Steinhauser '04, Gorbahn, Haisch '04; Gorbahn, Haisch, Misiak '05; Czakon, Haisch, Misiak '06,...)

$$\label{eq:c7} C_7 \sim -0.3 \qquad C_9 \sim 4.2 \qquad C_{10} \sim -4.2$$

Nazila Mahmoudi

FCCP 2022 - 22 september 2022 -

Introduction	
0000	

Global fits

Rare decays

Many observables, with different sensitivities to different Wilson coefficients.

decay	obs	C ₇ ^(')	C ₉ ^(′)	C ₁₀ ^(')
$B ightarrow X_s \gamma$	BR	х		
$B ightarrow K^* \gamma$	BR, A _I	х		
$B \to X_s \ell^+ \ell^-$	dBR/d q^2 , $A_{ m FB}$	х	х	х
$B ightarrow K \ell^+ \ell^-$	dBR/dq^2	х	Х	х
$B \to K^* \ell^+ \ell^-$	dBR/dq ² , angular obs.	х	Х	х
$B_s o \phi \ell^+ \ell^-$	dBR/dq ² , angular obs.	х	х	х
$B_s ightarrow \mu^+ \mu^-$	BR			х

The only reason C_9 is the main player to explain the anomalies is that C_7 and C_{10} are severely constrained!

 $\delta \langle P'_5 \rangle_{[4.3,8.68]} \simeq -0.52 \, \delta C_7 - 0.03 \, \delta C_8 - 0.08 \, \delta C_9 - 0.03 \, \delta C_{10}$

Introduction	Observables	Global fits	Conclusion
0000	●00000000	0000000	O
BR ($B_s \rightarrow \mu^+ \mu^-$)			

Relevant operators:

$$\begin{aligned} \text{BR}(B_{s} \to \mu^{+}\mu^{-}) &= \frac{G_{F}^{2}\alpha^{2}}{64\pi^{3}} \frac{f_{B_{s}}^{2}}{f_{B_{s}}^{2}} \tau_{B_{s}} m_{B_{s}}^{3} |V_{tb}V_{ts}^{*}|^{2} \sqrt{1 - \frac{4m_{\mu}^{2}}{m_{B_{s}}^{2}}} \\ &\times \left\{ \left(1 - \frac{4m_{\mu}^{2}}{m_{B_{s}}^{2}}\right) |C_{S} - C_{S}'|^{2} + \left| (C_{P} - C_{P}') + 2(C_{10} - C_{10}') \frac{m_{\mu}}{m_{B_{s}}} \right|^{2} \right\} \end{aligned}$$

Largest contributions in SM from a Z penguin top loop (75%) and a W box diagram (24%)

Main source of uncertainty:

- f_{B_s} : ~ 1.5%
- $\bullet~{\rm CKM}$: $\sim 2.5\%$
- Other (masses, α_s ,...) : \sim 1%

Introduction	Observables	Global fits	Conclusion
0000	●00000000	0000000	O
BR ($B_s \rightarrow \mu^+ \mu^-$)			

Relevant operators:

$$BR(B_{s} \to \mu^{+}\mu^{-}) = \frac{G_{F}^{2}\alpha^{2}}{64\pi^{3}} \frac{f_{B_{s}}^{2}}{f_{B_{s}}} \tau_{B_{s}} m_{B_{s}}^{3} |V_{tb}V_{ts}^{*}|^{2} \sqrt{1 - \frac{4m_{\mu}^{2}}{m_{B_{s}}^{2}}} \\ \times \left\{ \left(1 - \frac{4m_{\mu}^{2}}{m_{B_{s}}^{2}}\right) |C_{S} - C_{S}'|^{2} + \left| (C_{P} - C_{P}') + 2(C_{10} - C_{10}') \frac{m_{\mu}}{m_{B_{s}}} \right|^{2} \right\}$$

Largest contributions in SM from a Z penguin top loop (75%) and a W box diagram (24%) Main source of uncertainty:

- f_{B_s} : ~ 1.5%
- $\bullet~\text{CKM}$: $\sim 2.5\%$
- Other (masses, $\alpha_{s},...$) : \sim 1%

SM prediction: BR($B_s \rightarrow \mu^+ \mu^-$) = (3.61 ± 0.17) × 10⁻⁹

Superlso v4.1 Bobeth et al., Phys. Rev. Lett. 112 (2014) 101801, ...

Experimental measurement:

HFAG 2017 combination: BR $(B_s \to \mu^+ \mu^-) = (3.1 \pm 0.7) \times 10^{-9}$

LHCb, March 2021 (PRL 128, 4, 041801, 2022) BR $(B_s \rightarrow \mu^+ \mu^-)^{\text{LHCb}} = (3.09^{+0.46+0.15}_{-0.43-0.11}) \times 10^{-9}$

CMS, July 2022 (CMS-PAS-BPH-21-006) BR($B_s \rightarrow \mu^+ \mu^-$)^{CMS} = $(3.95^{+0.39+0.27+0.21}_{-0.37-0.22-0.19}) \times 10^{-9}$

Our combination using the latest measurements:

 $BR(B_s \to \mu^+ \mu^-) = 3.52^{+0.32}_{-0.30} \times 10^{-9}$

Nazila Mahmoudi

FCCP 2022 - 22 september 2022 - 🥮

SM prediction: BR($B_s \rightarrow \mu^+ \mu^-$) = (3.61 ± 0.17) × 10⁻⁹

Superlso v4.1 Bobeth et al., Phys. Rev. Lett. 112 (2014) 101801, ...

Experimental measurement:

HFAG 2017 combination: BR($B_s \to \mu^+ \mu^-$) = (3.1 ± 0.7) × 10⁻⁹

LHCb, March 2021 (PRL 128, 4, 041801, 2022) BR $(B_s \to \mu^+ \mu^-)^{\text{LHCb}} = (3.09^{+0.46+0.15}_{-0.43-0.11}) \times 10^{-9}$

CMS, July 2022 (CMS-PAS-BPH-21-006) BR $(B_s \rightarrow \mu^+\mu^-)^{\text{CMS}} = (3.95^{+0.39+0.27+0.21}_{-0.19}) \times 10^{-9}$

Our combination using the latest measurements:

 $BR(B_s \to \mu^+ \mu^-) = 3.52^{+0.32}_{-0.30} \times 10^{-9}$

Nazila Mahmoudi

FCCP 2022 - 22 september 2022 - 🥮

SM prediction: BR($B_s \rightarrow \mu^+ \mu^-$) = (3.61 ± 0.17) × 10⁻⁹

Superlso v4.1 Bobeth et al., Phys. Rev. Lett. 112 (2014) 101801, ...

Experimental measurement:

HFAG 2017 combination: ${
m BR}(B_s o \mu^+\mu^-) = (3.1\pm0.7) imes 10^{-9}$

LHCb, March 2021 (PRL 128, 4, 041801, 2022) $BR(B_s \to \mu^+ \mu^-)^{LHCb} = (3.09^{+0.46+0.15}_{-0.43-0.11}) \times 10^{-9}$

 $\begin{array}{l} \mbox{CMS, July 2022 (CMS-PAS-BPH-21-006)} \\ \mbox{BR}(B_{s} \rightarrow \mu^{+}\mu^{-})^{\rm CMS} = (3.95^{+0.39+0.27+0.21}_{-0.37-0.22-0.19}) \times 10^{-9} \end{array}$

Our combination using the latest measurements:

 ${
m BR}(B_s o \mu^+ \mu^-) = 3.52^{+0.32}_{-0.30} imes 10^{-9}$

Nazila Mahmoudi

FCCP 2022 - 22 september 2022 - 🥮

SM prediction: BR $(B_s \to \mu^+ \mu^-) = (3.61 \pm 0.17) \times 10^{-9}$

Superlso v4.1 Bobeth et al., Phys. Rev. Lett. 112 (2014) 101801, ...

Experimental measurement:

HFAG 2017 combination: ${
m BR}(B_s o \mu^+\mu^-) = (3.1\pm0.7) imes 10^{-9}$

LHCb, March 2021 (PRL 128, 4, 041801, 2022) $BR(B_s \rightarrow \mu^+ \mu^-)^{LHCb} = (3.09^{+0.46+0.15}_{-0.43-0.11}) \times 10^{-9}$

 $\begin{array}{l} \mbox{CMS, July 2022 (CMS-PAS-BPH-21-006)} \\ \mbox{BR}(B_{s} \rightarrow \mu^{+}\mu^{-})^{\rm CMS} = (3.95^{+0.39+0.27+0.21}_{-0.37-0.22-0.19}) \times 10^{-9} \end{array}$

Our combination using the latest measurements:

$${
m BR}(B_s o \mu^+ \mu^-) = 3.52^{+0.32}_{-0.30} imes 10^{-9}$$

Nazila Mahmoudi

Contributing loops:

Main operator: \mathcal{O}_7 but higher order contributions from $\mathcal{O}_1, ..., \mathcal{O}_8$

• Standard OPE for inclusive decays

• Very precise theory prediction (at NNLO)

$$BR(\bar{B} \to X_s \gamma)_{E_{\gamma} > E_0} = BR(\bar{B} \to X_c e\bar{\nu}) |\frac{V_{ts}^* V_{tb}}{V_{cb}}| \frac{6\alpha_{em}}{\pi C} [P(E_0) + N(E_0)]$$
pert non-pert
 $\sim 96\%$ $\sim 4\%$

SM prediction: BR($\bar{B} \rightarrow X_s \gamma$) = (3.34 ± 0.22) × 10⁻⁴

M. Misiak et al., PRL 98 (2007) 022002, PRL 114 (2015) 22, 221801,...

Experimental value (HFAG 2022): $BR(\bar{B} \to X_s \gamma) = (3.49 \pm 0.19) \times 10^{-4}$ With the full BELLE-II dataset, a ±2.6% uncertainty in the world average for $BR(\bar{B} \to X_s \gamma)_{exp}$ is expected.

Nazila Mahmoudi

Contributing loops:

Main operator: O_7 but higher order contributions from O_1 , ..., O_8

• Standard OPE for inclusive decays

• Very precise theory prediction (at NNLO)

$$BR(\bar{B} \to X_s \gamma)_{E_{\gamma} > E_0} = BR(\bar{B} \to X_c e\bar{\nu}) \left| \frac{V_{ts}^* V_{tb}}{V_{cb}} \right| \frac{6\alpha_{em}}{\pi C} \left[\frac{P(E_0) + N(E_0)}{\downarrow} \right]$$
pert non-pert $\sim 96\%$ $\sim 4\%$

SM prediction: BR($\bar{B} \rightarrow X_s \gamma$) = (3.34 ± 0.22) × 10⁻⁴

M. Misiak et al., PRL 98 (2007) 022002, PRL 114 (2015) 22, 221801,...

Experimental value (HFAG 2022): $BR(\bar{B} \to X_s \gamma) = (3.49 \pm 0.19) \times 10^{-4}$ With the full BELLE-II dataset, a ±2.6% uncertainty in the world average for $BR(\bar{B} \to X_s \gamma)_{exp}$ is expected.

Contributing loops:

Main operator: O_7 but higher order contributions from O_1 , ..., O_8

• Standard OPE for inclusive decays

SM prediction: BR($\bar{B} \rightarrow X_s \gamma$) = (3.34 ± 0.22) × 10⁻⁴

Superlso v4.1 M. Misiak et al., PRL 98 (2007) 022002, PRL 114 (2015) 22, 221801,...

Experimental value (HFAG 2022): BR $(\bar{B} \to X_s \gamma) = (3.49 \pm 0.19) \times 10^{-4}$ With the full BELLE-II dataset, a ±2.6% uncertainty in the world average for BR $(\bar{B} \to X_s \gamma)_{exp}$ is expected.

Contributing loops:

Main operator: O_7 but higher order contributions from O_1 , ..., O_8

• Standard OPE for inclusive decays

• Very precise theory prediction (at NNLO)

$$BR(\bar{B} \to X_s \gamma)_{E_{\gamma} > E_0} = BR(\bar{B} \to X_c e\bar{\nu}) \left| \frac{V_{ts}^* V_{tb}}{V_{cb}} \right| \frac{6\alpha_{em}}{\pi C} \left[\frac{P(E_0) + N(E_0)}{\downarrow} \right]$$
pert non-pert $\sim 96\%$ $\sim 4\%$

SM prediction: ${
m BR}(\bar{B} o X_s \gamma) = (3.34 \pm 0.22) imes 10^{-4}$

Superlso v4.1 M. Misiak et al., PRL 98 (2007) 022002, PRL 114 (2015) 22, 221801,...

Experimental value (HFAG 2022): BR($\bar{B} \rightarrow X_s \gamma$) = (3.49 ± 0.19) × 10⁻⁴ With the full BELLE-II dataset, a ±2.6% uncertainty in the world average for BR($\bar{B} \rightarrow X_s \gamma$)_{exp} is expected.

Angular distributions

The full angular distribution of the decay $\overline{B}^0 \to \overline{K}^{*0} \ell^+ \ell^- (\overline{K}^{*0} \to K^- \pi^+)$ is completely described by four independent kinematic variables: q^2 (dilepton invariant mass squared), θ_{ℓ} , θ_{K^*} , ϕ

Differential decay distribution:

$$\frac{d^4\Gamma}{dq^2\,d\cos\theta_\ell\,d\cos\theta_{K^*}\,d\phi} = \frac{9}{32\pi}J(q^2,\theta_\ell,\theta_{K^*},\phi)$$

 $\mathsf{J}(q^2, heta_\ell, heta_{K^*},\phi) = \sum_i \mathsf{J}_i(q^2) \, f_i(heta_\ell, heta_{K^*},\phi)$

 $^{\succ}$ angular coefficients J_{1-9}

functions of the spin amplitudes A_0 , A_{\parallel} , A_{\perp} , A_t , and A_s

Spin amplitudes: functions of Wilson coefficients and form factors

Main operators:

$$\begin{aligned} \mathcal{O}_9 &= \frac{e^2}{(4\pi)^2} \big(\bar{s}\gamma^{\mu} b_L \big) (\bar{\ell}\gamma_{\mu}\ell), \quad \mathcal{O}_{10} &= \frac{e^2}{(4\pi)^2} \big(\bar{s}\gamma^{\mu} b_L \big) (\bar{\ell}\gamma_{\mu}\gamma_5\ell) \\ \mathcal{O}_S &= \frac{e^2}{16\pi^2} \big(\bar{s}_L^{\alpha} b_R^{\alpha} \big) (\bar{\ell}\ell), \qquad \mathcal{O}_P &= \frac{e^2}{16\pi^2} \big(\bar{s}_L^{\alpha} b_R^{\alpha} \big) (\bar{\ell}\gamma_5\ell) \end{aligned}$$

Angular distributions

The full angular distribution of the decay $\overline{B}^0 \rightarrow \overline{K}^{*0} \ell^+ \ell^- (\overline{K}^{*0} \rightarrow K^- \pi^+)$ is completely described by four independent kinematic variables: q^2 (dilepton invariant mass squared), θ_ℓ , θ_{K^*} , ϕ

Differential decay distribution:

$$\frac{d^4\Gamma}{dq^2\,d\cos\theta_\ell\,d\cos\theta_{K^*}\,d\phi} = \frac{9}{32\pi}J(q^2,\theta_\ell,\theta_{K^*},\phi)$$

 $J(q^2, \theta_{\ell}, \theta_{K^*}, \phi) = \sum_i J_i(q^2) f_i(\theta_{\ell}, \theta_{K^*}, \phi)$ $\stackrel{\searrow}{\longrightarrow} \text{ angular coefficients } J_{1-9}$ $\stackrel{\searrow}{\longrightarrow} \text{ functions of the spin amplitudes } A_0, A_{\parallel}, A_{\perp}, A_t, \text{ and } A_S$ Spin amplitudes: functions of Wilson coefficients and form factors

Main operators:

Optimised observables: form factor uncertainties cancel at leading order

$$\langle P_1 \rangle_{\rm bin} = \frac{1}{2} \frac{\int_{\rm bin} dq^2 [J_3 + \bar{J}_3]}{\int_{\rm bin} dq^2 [J_{2s} + \bar{J}_{2s}]} \qquad \langle P_2 \rangle_{\rm bin} = \frac{1}{8} \frac{\int_{\rm bin} dq^2 [J_{6s} + \bar{J}_{6s}]}{\int_{\rm bin} dq^2 [J_{2s} + \bar{J}_{2s}]} \\ \langle P'_4 \rangle_{\rm bin} = \frac{1}{N'_{\rm bin}} \int_{\rm bin} dq^2 [J_4 + \bar{J}_4] \qquad \langle P'_5 \rangle_{\rm bin} = \frac{1}{2N'_{\rm bin}} \int_{\rm bin} dq^2 [J_5 + \bar{J}_5] \\ \langle P'_6 \rangle_{\rm bin} = \frac{-1}{2N'_{\rm bin}} \int_{\rm bin} dq^2 [J_7 + \bar{J}_7] \qquad \langle P'_8 \rangle_{\rm bin} = \frac{-1}{N'_{\rm bin}} \int_{\rm bin} dq^2 [J_8 + \bar{J}_8]$$

with

$$\mathcal{N}_{
m bin}' = \sqrt{-\int_{
m bin} dq^2 [J_{2s} + \bar{J}_{2s}] \int_{
m bin} dq^2 [J_{2c} + \bar{J}_{2c}]}$$

- + CP violating clean observables and other combinations
 - U. Egede et al., JHEP 0811 (2008) 032, JHEP 1010 (2010) 056 J. Matias et al., JHEP 1204 (2012) 104
 - S. Descotes-Genon et al., JHEP 1305 (2013) 137

Or alternatively:

$$S_{i} = \frac{J_{i(s,c)} + \bar{J}_{i(s,c)}}{\frac{d\Gamma}{dq^{2}} + \frac{d\bar{\Gamma}}{dq^{2}}} , \qquad P'_{4,5,8} = \frac{S_{4,5,8}}{\sqrt{F_{L}(1 - F_{L})}}$$

Global fits

Tension in the angular observables

$B^0 \to {\cal K}^{*0} \mu^+ \mu^-$ angular observables, in particular $P_5' \,/\, S_5$

- 2013 (1 fb $^{-1}$): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
- March 2015 (3 fb^{-1}): confirmation of the deviations (LHCL-CONF-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

3.7 σ deviation in the 3rd bin

Global fits

Tension in the angular observables

$B^0 ightarrow {\cal K}^{*0} \mu^+ \mu^-$ angular observables, in particular $P_5' \,/\, S_5$

- 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
 - March 2015 (3 fb^{-1}): confirmation of the deviations (LHCb-CONF-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

 3.7σ deviation in the 3rd bin

$B^0 ightarrow {\cal K}^{*0} \mu^+ \mu^-$ angular observables, in particular $P_5' \,/\, S_5$

- 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
- March 2015 (3 fb⁻¹): confirmation of the deviations (LHCb-CONF-2015-002)

Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

 $B^0
ightarrow {\cal K}^{*0} \mu^+ \mu^-$ angular observables, in particular $P_5' \,/\, S_5$

- 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
- March 2015 (3 fb⁻¹): confirmation of the deviations (LHCb-CONF-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

3.4 σ combined fit (likelihood)

 $B^0
ightarrow {\cal K}^{*0} \mu^+ \mu^-$ angular observables, in particular $P_5' \,/\, S_5$

- 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
- March 2015 (3 fb⁻¹): confirmation of the deviations (LHCb-CONF-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

Nazila Mahmoudi

First measurement of $B^+ \rightarrow K^{*+} \mu^+ \mu^-$ angular observables using the full Run 1 and Run 2 dataset (9 fb⁻¹):

The results confirm the global tension with respect to the SM!

Introduction	Observables	Global fits	Conclusion		
0000	0000000●00	0000000	O		
Issue of the hadronic nower corrections					

Effective Hamiltonian for $b \rightarrow s$ transitions

$$\begin{split} \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}} &= -\frac{\mathbf{4}G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=\mathbf{7},\mathbf{9},\mathbf{10}} C_i^{(\prime)} O_i^{(\prime)} \Big] \\ \langle \tilde{K}^* | \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}} | \tilde{\mathcal{B}} \rangle : \ \mathcal{B} \to \mathcal{K}^* \ \text{form factors } V, A_{\mathbf{0},\mathbf{1},\mathbf{2}}, \ \mathcal{T}_{\mathbf{1},\mathbf{2},\mathbf{3}} \\ \\ \text{Transversity amplitudes:} \end{split}$$

$$\begin{split} A_{\perp}^{L,R} &\simeq N_{\perp} \left\{ (C_{9}^{+} \mp C_{10}^{+}) \frac{V(q^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{+} T_{1}(q^{2}) \right\} \\ A_{\parallel}^{L,R} &\simeq N_{\parallel} \left\{ (C_{9}^{-} \mp C_{10}^{-}) \frac{A_{1}(q^{2})}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{-} T_{2}(q^{2}) \right\} \\ A_{0}^{L,R} &\simeq N_{0} \left\{ (C_{9}^{-} \mp C_{10}^{-}) \left[(\ldots) A_{1}(q^{2}) + (\ldots) A_{2}(q^{2}) \right] \\ &+ 2m_{b} C_{7}^{-} \left[(\ldots) T_{2}(q^{2}) + (\ldots) T_{3}(q^{2}) \right] \right\} \\ A_{S} &= N_{S} (C_{S} - C_{S}') A_{0}(q^{2}) \\ & \left(C_{i}^{\pm} \equiv C_{i} \pm C_{i}' \right) \end{split}$$

$$\mathcal{H}_{\rm eff} = \mathcal{H}_{\rm eff}^{\rm had} + \mathcal{H}_{\rm eff}^{\rm sl}$$

$$\begin{split} \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} &= -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{j=1...6} C_j O_j + C_8 O_8 \right] \\ \mathcal{A}_{\lambda}^{\mathrm{(had)}} &= -i \frac{e^2}{q^2} \int d^4 x e^{-iq \cdot x} \left(\ell^+ \ell^- |\mathcal{V}_{\mu}^{\mathrm{em, lept}}(x)| \mathbf{0} \right) \\ &\times \int d^4 y \, e^{iq \cdot y} \left(\bar{K}_{\lambda}^* | T (\mathcal{V}^{\mathrm{em, had}}, \mu(y) \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(\mathbf{0}) \right) | \bar{B}) \\ &\equiv \frac{e^2}{q^2} e_{\mu} \mathcal{L}_{V}^{\mu} \left[\underbrace{\mathrm{LO in } \mathcal{O}\left(\frac{\lambda}{m_b}, \frac{\lambda}{E_{K^*}}\right)}_{\mathrm{Non-Fact., QCDf}} \\ &+ \underbrace{h_{\lambda}(q^2)}_{\mathrm{power corrections}} \right] \\ \end{split}$$

 $\langle \bar{K}$

Introduction 0000	Observables 0000000●00	Global fits 00000000	Conclusion O
Issue of the hadronic pow	er corrections		
Effective Hamiltonian for	b ightarrow s transitions	$\mathcal{H}_{\mathrm{eff}} = \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} + \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}$	

 $\mathcal{A}^{(}$

$$\begin{split} \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}} &= -\frac{\mathbf{4}G_F}{\sqrt{\mathbf{2}}} \, V_{tb} \, v_{ts}^* \left[\sum_{i=\mathbf{7},\mathbf{9},\mathbf{10}} C_i^{(\prime)} O_i^{(\prime)} \right] \\ \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}} | \bar{B} \rangle \colon B \to \, \mathsf{K}^* \, \text{ form factors } \, V, \, A_{\mathbf{0},\mathbf{1},\mathbf{2}}, \, \mathsf{T}_{\mathbf{1},\mathbf{2},\mathbf{3}} \end{split}$$

Transversity amplitudes:

 $\langle \bar{K}^*$

$$\begin{split} A_{\perp}^{L,R} &\simeq N_{\perp} \left\{ (C_{0}^{+} \mp C_{10}^{+}) \frac{V(q^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{+} T_{1}(q^{2}) \right\} \\ A_{\parallel}^{L,R} &\simeq N_{\parallel} \left\{ (C_{0}^{-} \mp C_{10}^{-}) \frac{A_{1}(q^{2})}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{-} T_{2}(q^{2}) \right\} \\ A_{0}^{L,R} &\simeq N_{0} \left\{ (C_{0}^{-} \mp C_{10}^{-}) \left[(\dots)A_{1}(q^{2}) + (\dots)A_{2}(q^{2}) \right] \\ &+ 2m_{b}C_{7}^{-} \left[(\dots)T_{2}(q^{2}) + (\dots)T_{3}(q^{2}) \right] \right\} \\ A_{S} &= N_{S}(C_{S} - C_{S}')A_{0}(q^{2}) \\ &\qquad \left(C_{i}^{\pm} \equiv C_{i} \pm C_{i}' \right) \end{split}$$

$$\mathcal{H}_{\text{eff}}^{\text{had}} = -\frac{\mathbf{4}G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1...6} C_i O_i + C_{\mathbf{8}} O_{\mathbf{8}} \right]$$

$$\begin{split} {}^{\text{had}}_{\lambda} &= -i \frac{e^{\bullet}}{q^{2}} \int d^{4} x e^{-iq \cdot x} \left(\ell^{+} \ell^{-} | J_{\mu}^{\text{em,lept}}(x) | \mathbf{0} \right) \\ &\times \int d^{4} y e^{iq \cdot y} \left(\vec{k}_{\lambda}^{+} | T \{ J^{\text{em,had}}, \mu(y) \mathcal{H}_{\text{eff}}^{\text{had}}(\mathbf{0}) \} | \vec{B} \right) \\ &\equiv \frac{e^{2}}{q^{2}} \epsilon_{\mu} L_{V}^{\mu} \left[\underbrace{\text{LO in } \mathcal{O}(\frac{\Lambda}{m_{b}}, \frac{\Lambda}{E_{K^{*}}}) \\ & \text{Non-Fact., QCDf} \right] \\ &+ \underbrace{b_{\lambda}(q^{2})}_{\text{power corrections}} \end{bmatrix}$$

Recent progress show that these corrections should be very small (2011.09813)

	Introduction 0000	Observables 0000000●00	Global fits 0000000	Conclusion O
I	Issue of the hadronic pow	er corrections		
	Effective Hamiltonian for	b ightarrow s transitions	$\mathcal{H}_{\mathrm{eff}} = \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} + \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}$	
	$\begin{split} \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}} &= -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=7}^{i=7} \langle \tilde{K}^* \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}} \tilde{B} \rangle : B \to K^* \text{ form factor} \\ \mathbf{Transversity amplitudes:} \end{split}$	$\sum_{j,9,10} C_i^{(\prime)} O_i^{(\prime)}]$ ors V, A _{0,1,2} , T _{1,2,3}	$\mathcal{H}_{\text{eff}}^{\text{had}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=16} C_i V_{ts}^* \right]_{\lambda} = -i \frac{e^2}{q^2} \int d^4 x e^{-iq \cdot x} \langle \ell^+ \ell^- U_{\mu}^{\text{en}} \rangle_{\lambda}$ $\times \int d^4 y e^{iq \cdot y} \langle \bar{K}_{\lambda}^* T \{ j^{\text{em}}, \text{had} \rangle_{\lambda}$	$O_{i} + C_{\mathbf{g}} O_{\mathbf{g}} \bigg $ $n, lept(x) 0 \rangle$ $l, \mu(y) \mathcal{H}_{eff}^{had}(0) \} \bar{B} \rangle$
	$\begin{aligned} A_{\perp}^{L,R} &\simeq N_{\perp} \left\{ (C_{9}^{+} \mp C_{10}^{+}) \frac{V(q^{2})}{m_{B} + m_{\mu}} \right. \\ A_{\parallel}^{L,R} &\simeq N_{\parallel} \left\{ (C_{9}^{-} \mp C_{10}^{-}) \frac{A_{1}(q^{2})}{m_{B} - m_{\mu}} \right. \\ A_{0}^{L,R} &\simeq N_{0} \left\{ (C_{9}^{-} \mp C_{10}^{-}) \left[(\ldots) A_{1} (q^{2}) \right] \right\} \end{aligned}$	$\frac{1}{\sqrt{\kappa}} + \frac{2m_b}{q^2} c_7^+ T_1(q^2) \\ \frac{1}{\sqrt{\kappa}} + \frac{2m_b}{q^2} c_7^- T_2(q^2) \\ \frac{1}{q^2} + (\dots)A_2(q^2) \\ \frac{1}{q^2} + (\dots)T_3(q^2) \\ \frac{1}{2} \end{cases}$	$\equiv \frac{e^2}{q^2} \epsilon_{\mu} t_{V}^{\mu} \begin{bmatrix} \text{LO in } \mathcal{O}(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_K}) \\ \text{Non-Fact., QC} \\ + \frac{h_{\lambda}(q^2)}{power corrections} \end{bmatrix}$	(<u>*</u>) Df

 \rightarrow unknown

Recent progress show that these corrections should be very small (2011.09813)

The significance of the anomalies depends on the assumptions made for the unknown power corrections!

This does not affect LFUV ratios, but does affect the combined fits!

 $A_{\mathsf{S}} = N_{\mathsf{S}}(\mathsf{C}_{\mathsf{S}} - \mathsf{C}_{\mathsf{S}}')A_{\mathsf{O}}(q^{\mathsf{2}})$

 $\left(C_{i}^{\pm} \equiv C_{i} \pm C_{i}^{\prime}\right)$

Introduction

Observables

Global fits

Lepton flavour universality tests

Lepton flavour universality in $B^+ \to K^+ \ell^+ \ell^-$

 $R_{K} = BR(B^{+} \rightarrow K^{+}\mu^{+}\mu^{-})/BR(B^{+} \rightarrow K^{+}e^{+}e^{-})$

- Theoretical description similar to $B\to K^*\mu^+\mu^-,$ but different since K is scalar
- SM prediction very accurate: $R_{K}^{
 m SM}=1.0006\pm0.0004$
- Latest update: March 2021 using 9 fb⁻¹

 $R_{K}^{\rm exp} = 0.846^{+0.042}_{-0.039}({\rm stat})^{+0.013}_{-0.012}({\rm syst})$

• 3.1σ tension in the [1.1-6] GeV² bin

Nature Phys. 18 (2022) 3, 277

Introduction

Observables

Global fits

Lepton flavour universality tests

Lepton flavour universality in $B^+ \to K^+ \ell^+ \ell^-$

 $R_{K} = BR(B^{+} \rightarrow K^{+}\mu^{+}\mu^{-})/BR(B^{+} \rightarrow K^{+}e^{+}e^{-})$

- Theoretical description similar to $B \to K^* \mu^+ \mu^-$, but different since K is scalar
- SM prediction very accurate: $R_{K}^{
 m SM}=1.0006\pm0.0004$
- Latest update: March 2021 using 9 fb⁻¹

 $R_{K}^{\rm exp} = 0.846^{+0.042}_{-0.039} ({\rm stat})^{+0.013}_{-0.012} ({\rm syst})$

• 3.1σ tension in the [1.1-6] GeV² bin

Lepton flavour universality in $B^0 \to K^{*0} \ell^+ \ell^ R_{K^*} = BR(B^0 \to K^{*0} \mu^+ \mu^-)/BR(B^0 \to K^{*0} e^+ e^-)$

- LHCb measurement from April 2017 using 3 fb⁻¹
- $\bullet~{\rm Two}~q^2$ regions: [0.045-1.1] and [1.1-6.0] ${\rm GeV^2}$

$$R_{K^*}^{
m exp, bin1} = 0.66^{+0.11}_{-0.07}(
m stat) \pm 0.03(
m syst)$$

$$R_{K^*}^{\rm exp, bin2} = 0.69^{+0.11}_{-0.07} ({\rm stat}) \pm 0.05 ({\rm syst})$$

• 2.2-2.5 σ tension in each bin

Nature Phys. 18 (2022) 3, 277

JHEP 08 (2017) 055

Introduction	Observables	Global fits	Conclusion
0000	000000000●	00000000	O
Lepton flavour universality	tests		

Two more recent measurements (October 2021) with 9 fb $^{-1}$:

 $B^+ \to K^{*+} \ell^+ \ell^-$ and $B^0 \to K^0_S \ell^+ \ell^-$

 $R_{K^{*+}} = 0.70^{+0.18}_{-0.13}(stat)^{+0.03}_{-0.04}(syst)$ and $R_{K^0_S} = 0.66^{+0.20}_{-0.15}(stat)^{+0.02}_{-0.04}(syst)$

Phys.Rev.Lett. 128 (2022) 19, 191802

More measurements to come:

$$B^0_s
ightarrow \phi \ell^+ \ell^-$$
, $B
ightarrow \pi \ell^+ \ell^-$, ...

Introduction	Observables	Global fits	Conclusion	
0000	00000000●	00000000	O	
Lepton flavour universality	/ tests			

Two more recent measurements (October 2021) with 9 fb $^{-1}$:

 $B^+ \to K^{*+} \ell^+ \ell^-$ and $B^0 \to K^0_S \ell^+ \ell^-$

 $R_{K^{*+}} = 0.70^{+0.18}_{-0.13}(stat)^{+0.03}_{-0.04}(syst)$ and $R_{K^0_S} = 0.66^{+0.20}_{-0.15}(stat)^{+0.02}_{-0.04}(syst)$

Phys.Rev.Lett. 128 (2022) 19, 191802

More measurements to come:

$$B^{0}_{s}
ightarrow \phi\ell^{+}\ell^{-}$$
, $B
ightarrow \pi\ell^{+}\ell^{-}$, ...

Global fits

Nazila Mahmoudi

Introduction	Observables	Global fits	Conclusion	
0000	000000000	•0000000	O	
New Physics interpretatio	n?			

IF the deviations are from New Physics...

we need to find the Ingredients first!

Many observables \rightarrow **Global fits** of the latest data

Relevant *Operators*:

$\mathcal{O}_7, \mathcal{O}_8, \mathcal{O}_{9\mu,e}^{(\prime)}$, $\mathcal{O}_{10\mu,e}^{(\prime)}$ and $\mathcal{O}_{S-P} \propto (\bar{s}P_R b)(\bar{\mu}P_L \mu)$

 $\mathsf{NP}\xspace$ manifests itself in the shifts of the individual coefficients with respect to the SM values:

$$C_i(\mu) = C_i^{\mathrm{SM}}(\mu) + \delta C_i$$

- \rightarrow Scans over the values of δC_i
- \rightarrow Calculation of flavour observables
- \rightarrow Comparison with experimental results
- \rightarrow Constraints on the Wilson coefficients C_i

Introduction	Observables	Global fits	Conclusion	
0000	000000000	●0000000	O	
New Physics interpretatio	n?			

IF the deviations are from New Physics...

we need to find the Ingredients first!

Many observables \rightarrow Global fits of the latest data

Relevant Operators:

 \mathcal{O}_7 , \mathcal{O}_8 , $\mathcal{O}_{9\mu,e}^{(\prime)}$, $\mathcal{O}_{10\mu,e}^{(\prime)}$ and $\mathcal{O}_{S-P} \propto (\bar{s}P_R b)(\bar{\mu}P_L \mu)$

 NP manifests itself in the shifts of the individual coefficients with respect to the SM values:

$$C_i(\mu) = C_i^{\mathrm{SM}}(\mu) + \delta C_i$$

- \rightarrow Scans over the values of δC_i
- \rightarrow Calculation of flavour observables
- \rightarrow Comparison with experimental results
- \rightarrow Constraints on the Wilson coefficients C_i

Introduction	Observables	Global fits	Conclusion
0000	0000000000	○●○○○○○○	O
Theoretical uncertainties			

Theoretical uncertainties and correlations

- Monte Carlo analysis
- variation of the "standard" input parameters: masses, scales, CKM, ...
- decay constants taken from the latest lattice results
- $B \to K^{(*)}$ and $B_s \to \phi$ form factors are obtained from the lattice+LCSR combinations, including all the correlations
- Parameterisation of uncertainties from power corrections:

$$A_k
ightarrow A_k \left(1 + a_k \exp(i\phi_k) + rac{q^2}{6 \ {
m GeV}^2} b_k \exp(i\theta_k)
ight)$$

 $|a_k|$ between 10 to 60%, $b_k \sim 2.5a_k$ Low recoil: $b_k = 0$

 \Rightarrow Computation of a (theory + exp) correlation matrix

Introduction

Observables

Global fits 00●00000

Global fits

Global fits of the observables obtained by minimisation of

$$\chi^{2} = (\vec{O}^{\text{th}} - \vec{O}^{\text{exp}}) \cdot (\Sigma_{\text{th}} + \Sigma_{\text{exp}})^{-1} \cdot (\vec{O}^{\text{th}} - \vec{O}^{\text{exp}})$$
$$(\Sigma_{\text{th}} + \Sigma_{\text{exp}})^{-1} \text{ is the inverse covariance matrix.}$$

183 observables relevant for leptonic and semileptonic decays:

- BR $(B \rightarrow X_s \gamma)$
- BR $(B \rightarrow X_d \gamma)$
- BR($B \rightarrow K^* \gamma$)
- $\Delta_0(B \to K^*\gamma)$
- $\mathsf{BR}^{\mathsf{low}}(B \to X_s \mu^+ \mu^-)$
- $\mathsf{BR}^{\mathsf{high}}(B \to X_s \mu^+ \mu^-)$
- $BR^{low}(B \rightarrow X_s e^+ e^-)$
- $\mathsf{BR}^{\mathsf{high}}(B \to X_s e^+ e^-)$
- BR($B_s \rightarrow \mu^+ \mu^-$)
- BR($B_s \rightarrow e^+e^-$)
- BR($B_d \rightarrow \mu^+ \mu^-$)
- R_K in the low q^2 bin

- R_{K^*} in 2 low q^2 bins
- BR($B \rightarrow K^0 \mu^+ \mu^-$)
- $B \rightarrow K^+ \mu^+ \mu^-$: BR, F_H
- $B \rightarrow K^* e^+ e^-$: BR, F_L , A_T^2 , A_T^{Re}
- $B \to K^{*0} \mu^+ \mu^-$: BR, F_L , A_{FB} , S_3 , S_4 , S_5 , S_7 , S_8 , S_9 in 8 low q^2 and 4 high q^2 bins
- $B^+ \rightarrow K^{*+} \mu^+ \mu^-$: BR, F_L, A_{FB}, S₃, S₄, S₅, S₇, S₈, S₉ in 5 low q² and 2 high q² bins
- $B_s \rightarrow \phi \mu^+ \mu^-$: BR, F_L , S_3 , S_4 , S_7 in 3 low q^2 and 2 high q^2 bins
- $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$: BR, A_{FB}^{ℓ} , A_{FB}^{h} , $A_{FB}^{\ell h}$, F_L in the high q^2 bin

Computations performed using **SuperIso** public program

Introduction	
0000	

Observables

Global fits

Single operator fits

Comparison of one-operator NP fits:

T. Hurth, FM, D. Martinez Santos, S. Neshatpour, PLB 824 (2022) 136838, updated with the latest results

Only $R_{\kappa^{(*)}}, B_{s,d} \rightarrow \mu^+ \mu^-$										
	$(\chi^2_{\rm SM} = 34.25)$									
b.f. value χ^2_{min} Pull _{SM}										
δC9	-2.00 ± 5.00	30.5	0.4 <i>o</i>							
δC_9^e	0.83 ± 0.21	10.8	4.4σ							
δC_9^{μ}	-0.80 ± 0.21	11.8	4.3σ							
δC_{10}	0.03 ± 0.20	30.6	0.1σ							
δC_{10}^e	-0.81 ± 0.19	8.7	4.7σ							
δC_{10}^{μ}	0.50 ± 0.14	16.2	3.8σ							
δC_{LL}^e	0.43 ± 0.11	9.7	4.6σ							
$\delta C^{\mu}_{\rm LL}$	-0.33 ± 0.08	12.4	4.3σ							

↓

clean

 $\delta {\it C}^\ell_{\rm LL}$ basis corresponds to $\delta {\it C}^\ell_{\rm 9} = - \delta {\it C}^\ell_{\rm 10}.$

Introduction

Observables

Global fits 000●0000

Single operator fits

Comparison of one-operator NP fits:

T. Hurth, FM, D. Martinez Santos, S. Neshatpour, PLB 824 (2022) 136838, updated with the latest results

Only $R_{\kappa(s)}, B_{s,d} \rightarrow \mu^+ \mu^-$									
$(\chi^2_{\rm SM} = 34.25)$									
b.f. value χ^2_{min} Pull _{SM}									
δC_9	-2.00 ± 5.00	30.5	0.4σ						
δC_9^e	0.83 ± 0.21	10.8	4.4σ						
δC_9^{μ}	-0.80 ± 0.21	11.8	4.3σ						
δC_{10}	0.03 ± 0.20	30.6	0.1σ						
δC_{10}^e	-0.81 ± 0.19	8.7	4.7σ						
δC_{10}^{μ}	0.50 ± 0.14	16.2	3.8σ						
δC_{LL}^e	0.43 ± 0.11	9.7	4.6σ						
$\delta C^{\mu}_{\rm LL}$	-0.33 ± 0.08	12.4	4.3σ						

All observables except $R_{\kappa(*)}, B_{s,d} \rightarrow \mu^+ \mu^-$									
$(\chi^2_{\rm SM} = 221.8)$									
b.f. value χ^2_{min} Pull _{SM}									
δC9	-0.95 ± 0.13	185.1	6.1σ						
δC_9^e	0.70 ± 0.60	220.5	1.1σ						
δC_9^{μ}	-0.96 ± 0.13	182.8	6.2σ						
δC_{10}	0.29 ± 0.21	219.8	1.4σ						
δC_{10}^e	-0.60 ± 0.50	220.6	1.1σ						
δC_{10}^{μ}	0.35 ± 0.20	218.7	1.8σ						
$\delta C_{\rm LL}^e$	0.34 ± 0.29	220.6	1.1σ						
$\delta C^{\mu}_{\rm LL}$	-0.64 ± 0.13	195.0	5.2σ						

 \downarrow

clean

 $\delta {\it C}^{\ell}_{\rm LL}$ basis corresponds to $\delta {\it C}^{\ell}_{\rm 9} = - \delta {\it C}^{\ell}_{\rm 10}.$

Introduction

Observables

Global fits 000€0000

Single operator fits

Comparison of one-operator NP fits:

T. Hurth, FM, D. Martinez Santos, S. Neshatpour, PLB 824 (2022) 136838, updated with the latest results

Only $R_{\kappa_{s,d}^{(*)}}, B_{s,d} o \mu^+ \mu^-$]	All observables except $R_{{ m K}(*)}, B_{{ m s},d} o \mu^+ \mu^-$				All observables				
$(\chi^2_{SM} = 34.25)$					$(\chi^2_{SM} = 221.8)$				$(\chi^2_{SM} = 253.3)$				
	b.f. value	$\chi^2_{\rm min}$	$\mathrm{Pull}_{\mathrm{SM}}$]		b.f. value	$\chi^2_{\rm min}$	Pull _{SM}			b.f. value	$\chi^2_{\rm min}$	$\operatorname{Pull}_{\operatorname{SM}}$
δC_9	-2.00 ± 5.00	30.5	0.4 <i>o</i>]	δC_9	-0.95 ± 0.13	185.1	6.1 <i>σ</i>		δC9	-0.95 ± 0.13	215.8	6.1σ
δC_9^e	0.83 ± 0.21	10.8	4.4σ		δC_9^e	0.70 ± 0.60	220.5	1.1σ		δC_9^e	0.82 ± 0.19	232.4	4.6σ
δC_9^{μ}	-0.80 ± 0.21	11.8	4.3σ		δC_9^{μ}	-0.96 ± 0.13	182.8	6 .2 <i>σ</i>		δC_9^{μ}	-0.92 ± 0.11	195.2	7.6σ
δC_{10}	0.03 ± 0.20	30.6	0.1σ]	δC_{10}	0.29 ± 0.21	219.8	1.4σ		δC_{10}	0.08 ± 0.16	253.2	0.5σ
δC_{10}^e	-0.81 ± 0.19	8.7	4.7σ		δC_{10}^e	-0.60 ± 0.50	220.6	1.1σ		δC_{10}^e	-0.77 ± 0.18	230.6	4.8σ
δC_{10}^{μ}	0.50 ± 0.14	16.2	3.8σ		δC_{10}^{μ}	0.35 ± 0.20	218.7	1.8σ		δC_{10}^{μ}	0.43 ± 0.12	238.9	3.8σ
δC_{LL}^{e}	0.43 ± 0.11	9.7	4.6σ		δC_{LL}^{e}	0.34 ± 0.29	220.6	1.1σ		δC_{LL}^e	0.42 ± 0.10	231.4	4.7σ
$\delta C^{\mu}_{\rm LL}$	-0.33 ± 0.08	12.4	4.3σ		$\delta C^{\mu}_{\rm LL}$	-0.64 ± 0.13	195.0	5.2σ		$\delta C^{\mu}_{\rm LL}$	-0.43 ± 0.07	213.6	6.3 σ
\downarrow					\downarrow \downarrow								
					Dependent on the assumptions on the non-factorisable								
clean													

power corrections

 $\delta C_{\rm LL}^\ell$ basis corresponds to $\delta C_9^\ell = -\delta C_{10}^\ell$.

- Compatible NP scenarios between different sets
- Hierarchy of the preferred NP scenarios have remained the same with updated data (C_9^μ followed by $C_{\rm LL}^\mu)$
- ullet Significance increased by more than 2σ in the preferred scenarios compared to 2019

Introduction	Observables	Global fits	Conclusion	
0000	000000000	0000●000		
Fit results for two operato	irs			

 $(C_9^{\mu} - C_{10}^{\mu})$

2D fits to all available data:

 $(C_{9}^{\mu}-C_{9}^{e})$

2019: Run I results

Introduction	Observables	Global fits	Conclusion
0000	000000000	0000●000	
Fit results for two operato	rs		

2D fits to all available data:

2019: Run I results

2021: (partial) Run II updates, mainly for $B \to K^* \mu^+ \mu^-$, R_K and $B_s \to \mu^+ \mu^-$ (LHCb)

Introduction	Observables	Global fits	Conclusion
0000	0000000000	0000●000	O
Fit results for two operat	ors		

2D fits to all available data:

- 2019: Run I results
- **2021**: (partial) Run II updates, mainly for $B \to K^* \mu^+ \mu^-$, R_K and $B_s \to \mu^+ \mu^-$ (LHCb)
- 2022: current situation

(partial) Run II updates, mainly for $B_s \to \mu^+ \mu^-$ (CMS), $R_{K^{*+}}$, $R_{K_s^0}$ and $B_s \to \phi \mu^+ \mu^-$

Introduction	Observables	Global fits	Conclusion
0000	000000000	00000●00	O
Two operator fits			

2D fits to angular observables and branching ratios (No LFUV ratios):

with the assumption of 10% power corrections

GAMBIT, J. Bhom et al., Eur.Phys.J.C 81 (2021) 12, 1076

- Contour lines: 1, 2 and 3σ confidence regions.
- SM prediction: yellow cross.

- Grey contours: when the theory covariance is approximated by its value in the SM, across the entire parameter space.

Large negative contributions to C_9 are favoured

Introduction

Full fit - results

Set: real $C_7, C_8, C_9^{\ell}, C_{10}^{\ell}, C_5^{\ell}, C_P^{\ell}$ + primed coefficients, 20 degrees of freedom

All observables with $\chi^2_{ m SM}=253.5$			
	$\chi^2_{\rm min} = 179.1;$	$\mathrm{Pull}_{\mathrm{SM}} = 5.5\sigma$	
δ	C7	δΟ	.8
0.06 =	± 0.03	-0.80 =	± 0.40
δ	C7	δΟ	-/ ·8
-0.01	± 0.01	-0.30 ± 1.30	
δC_9^{μ}	δC_9^e	δC^{μ}_{10}	δC_{10}^e
-1.14 ± 0.19	-6.50 ± 1.90	0.21 ± 0.20	2.60 ± 3.1
$\delta C_{9}^{\prime \mu}$	$\delta C_9^{\prime e}$	$\delta C_{10}^{\prime\mu}$	$\delta C_{10}^{\prime e}$
0.05 ± 0.32	1.40 ± 2.30	-0.03 ± 0.19	1.30 ± 3.2
$C^{\mu}_{Q_1}$	$C^{e}_{Q_{1}}$	$C^{\mu}_{Q_2}$	$C^{e}_{Q_2}$
0.04 ± 0.20	-1.60 ± 1.70	-0.15 ± 0.08	-4.10 ± 0.9
$C_{Q_1}^{\prime\mu}$	$C_{Q_1}^{\prime e}$	$C_{Q_{2}}^{\prime \mu}$	$C_{Q_2}^{\prime e}$
-0.03 ± 0.20	-1.50 ± 2.10	-0.16 ± 0.08	-4.00 ± 1.2

- ${\, \bullet \,}$ No real improvement in the fits when going beyond the C_9^μ case
- Many parameters are weakly constrained at the moment
- $\bullet\,$ The global tension is at the level of 5.5σ (assuming 10% uncertainty for the power corrections)

Introduction	Observables	Global fits	Conclusion
0000	000000000	0000000●	O
Wilks' test			

$\mathsf{Pull}_{\mathrm{SM}}$ of 1, 2, 6, 10 and 20 dimensional fit:

Set of WC	param.	$\chi^2_{\rm min}$	$Pull_{\mathrm{SM}}$	Improvement
SM	0	225.8	-	-
C_9^μ	1	168.6	7.6σ	7.6σ
$C_{9}^{\mu}, C_{10}^{\mu}$	2	167.5	7.3σ	1.0σ
$C_7, C_8, C_9^{(e,\mu)}, C_{10}^{(e,\mu)}$	6	158.0	7.1σ	2.0σ
All non-primed WC	10	157.2	6.5σ	0.1σ
All WC (incl. primed)	20 (19)	151.6	$5.5(5.6)\sigma$	$0.2(0.3)\sigma$

T. Hurth, FM, D. Martinez Santos, S. Neshatpour, PLB 824 (2022) 136838

The "All non-primed WC" includes in addition to the previous row, the scalar and pseudoscalar Wilson coefficients.

The last row also includes the chirality-flipped counterparts of the Wilson coefficients.

In the last column the significance of improvement of the fit compared to the scenario of the previous row is given.

The number in parentheses corresponds to the effective degrees of freedom (19).

Introduction 0000	Observables 000000000	Global fits 00000000	Conclusion ●
Conclusion			

 \rightarrow We learned from model-independent analysis that $\sim 25\%$ reduction in C9 can consistently explain the data

 \rightarrow Possible to build concrete (simplified) NP models to accommodate this (see next talks)

How to interpret the anomalies?

- They cannot be explained by Statistical fluctuations
- They cannot be explained by experimental issues
- They cannot be explained by unknown pieces in the theoretical calculations
- They cannot be explained by underestimated theoretical uncertainties

Possible explanations:

- Combination of above!!
- New Physics

Introduction	Observables	Global fits	Conclusion
0000	000000000	00000000	●
Conclusion			

 \rightarrow We learned from model-independent analysis that $\sim 25\%$ reduction in Cg can consistently explain the data

 \rightarrow Possible to build concrete (simplified) NP models to accommodate this (see next talks)

How to interpret the anomalies?

- They cannot be explained by Statistical fluctuations
- They cannot be explained by experimental issues
- They cannot be explained by unknown pieces in the theoretical calculations
- They cannot be explained by underestimated theoretical uncertainties

Possible explanations:

- Combination of above!!
- New Physics

Introduction 0000	Observables 0000000000	Global fits 0000000	Conclusion •
Conclusion			

 \rightarrow We learned from model-independent analysis that $\sim 25\%$ reduction in C9 can consistently explain the data

 \rightarrow Possible to build concrete (simplified) NP models to accommodate this (see next talks)

How to interpret the anomalies?

- They cannot be explained by Statistical fluctuations
- They cannot be explained by experimental issues
- They cannot be explained by unknown pieces in the theoretical calculations
- They cannot be explained by underestimated theoretical uncertainties

Possible explanations:

- Combination of above!!
- New Physics

Introduction 0000	Observables 000000000	Global fits 0000000	Conclusion •
Conclusion			

- \rightarrow Several deviations from the SM predictions in $b\rightarrow s\ell\ell$ transitions since 2013
- \rightarrow We learned from model-independent analysis that $\sim 25\%$ reduction in C9 can consistently explain the data
- \rightarrow Possible to build concrete (simplified) NP models to accommodate this (see next talks)

How to interpret the anomalies?

- They cannot be explained by Statistical fluctuations
- They cannot be explained by experimental issues
- They cannot be explained by unknown pieces in the theoretical calculations
- They cannot be explained by underestimated theoretical uncertainties

Possible explanations:

- Combination of above!!
- New Physics

Introduction 0000	Observables 000000000	Global fits 0000000	Conclusion •
Conclusion			

- \rightarrow Several deviations from the SM predictions in $b\rightarrow s\ell\ell$ transitions since 2013
- \rightarrow We learned from model-independent analysis that $\sim 25\%$ reduction in C9 can consistently explain the data
- \rightarrow Possible to build concrete (simplified) NP models to accommodate this (see next talks)

How to interpret the anomalies?

- They cannot be explained by Statistical fluctuations
- They cannot be explained by experimental issues
- They cannot be explained by unknown pieces in the theoretical calculations
- They cannot be explained by underestimated theoretical uncertainties

Possible explanations:

- Combination of above!!
- New Physics

Introduction O	Observables	Global fits	Conclusion
	DOOOOOOOOO	00000000	•
Conclusion			

 \rightarrow We learned from model-independent analysis that $\sim 25\%$ reduction in C9 can consistently explain the data

 \rightarrow Possible to build concrete (simplified) NP models to accommodate this (see next talks)

How to interpret the anomalies?

- They cannot be explained by Statistical fluctuations
- They cannot be explained by experimental issues
- They cannot be explained by unknown pieces in the theoretical calculations
- They cannot be explained by underestimated theoretical uncertainties

Possible explanations:

- Combination of above!!
- New Physics