Radiative corrections to $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$ (and $\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}$)

Gilberto Colangelo

$$
\begin{aligned}
& \text { BERN } \\
& \text { AEC } \\
& \text { UNIVERSITÄT } \\
& \text { ALBERT EINSTEIN CENTER } \\
& \text { FOR FUNDAMENTAL PHYSICS }
\end{aligned}
$$

FCCP 2020 - Sept. 22-24, 2022

Outline

Introduction
Illustration of the approach: the forward-backward asymmetry in $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$

Dispersive approach to radiative corrections to $\pi \pi$ scattering
Dispersive approach to FSR in $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
Conclusions and outlook

Work done in collaboration with
Martin Hoferichter, Joachim Monnard and Jacobo Ruiz de Elvira

Outline

Introduction

Illustration of the approach: the forward-backward asymmetry in $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$

Dispersive approach to radiative corrections to $\pi \pi$ scattering

Dispersive approach to FSR in $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$

Conclusions and outlook

HVP contribution to $(g-2)_{\mu}$

Contribution	Value $\times 10^{11}$
QED	$116584718.931(104)$
Electroweak	$153.6(1.0)$
HVP $\left(e^{+} e^{-}\right.$, LO + NLO + NNLO)	$6845(40)$
HLbL (phenomenology + lattice + NLO)	$92(18)$
Total SM Value	$116591810(43)$
Experiment	$116592061(41)$
Difference: $\Delta a_{\mu}:=a_{\mu}^{\exp }-a_{\mu}^{\text {SM }}$	$251(59)$

HVP dominant source of theory uncertainty
rel. size $\sim 0.6 \% \Rightarrow \mathrm{RC}$ in $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$must be under control
RC evaluation based on models so far
A dispersive approach could lead to model-independent results

Radiative corrections to $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$

Initial State Radiation:

can be calculated in QED in terms of $F_{\pi}^{V}(s)$

Radiative corrections to $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$

Final State Radiation:

requires hadronic matrix elements beyond $F_{\pi}^{V}(s)$ known in ChPT to one loop

Radiative corrections to $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$

Interference terms:

also require hadronic matrix elements beyond $F_{\pi}^{V}(s)$

Radiative corrections to $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$

Interference terms:

also require hadronic matrix elements beyond $F_{\pi}^{V}(s)$ other than in the 1π-exchange approximation;
do not contribute to the total cross section because C-odd but to the forward-backward asymmetry

Dispersive approach to FSR

Dispersive approach to FSR

Disc

Neglecting intermediate states beyond 2π, unitarity reads

$$
\begin{aligned}
\frac{\operatorname{Disc} F_{\pi}^{V, \alpha}(s)}{2 i} & =\frac{(2 \pi)^{4}}{2} \int d \Phi_{2} F_{\pi}^{V}(s) \times T_{\pi \pi}^{\alpha *}(s, t) \\
& +\frac{(2 \pi)^{4}}{2} \int d \Phi_{2} F_{\pi}^{V, \alpha}(s) \times T_{\pi \pi}^{*}(s, t) \\
& +\frac{(2 \pi)^{4}}{2} \int d \Phi_{3} F_{\pi}^{V, \gamma}(s, t) T_{\pi \pi}^{\gamma *}\left(s,\left\{t_{i}\right\}\right)
\end{aligned}
$$

Dispersive approach to FSR

Disc

Neglecting intermediate states beyond 2π, unitarity reads

$$
\begin{aligned}
\frac{\operatorname{Disc}_{\pi}^{V, \alpha}(s)}{2 i} & =\frac{(2 \pi)^{4}}{2} \int d \Phi_{2} F_{\pi}^{V}(s) \times T_{\pi \pi}^{\alpha *}(s, t) \\
& +\frac{(2 \pi)^{4}}{2} \int d \Phi_{2} F_{\pi}^{V, \alpha}(s) \times T_{\pi \pi}^{*}(s, t) \\
& +\frac{(2 \pi)^{4}}{2} \int d \Phi_{3} F_{\pi}^{V, \gamma}(s, t) T_{\pi \pi}^{\gamma *}(s,\{t i\})
\end{aligned}
$$

\Rightarrow need $T_{\pi \pi}^{\alpha}$ as well as $T_{\pi \pi}^{\gamma}$ and $F_{\pi}^{V, \gamma}$ as input

Dispersive approach to FSR

Disc

Neglecting intermediate states beyond 2π, unitarity reads

$$
\begin{aligned}
\frac{\operatorname{Disc} F_{\pi}^{V, \alpha}(s)}{2 i} & =\frac{(2 \pi)^{4}}{2} \int d \Phi_{2} F_{\pi}^{V}(s) \times T_{\pi \pi}^{\alpha *}(s, t) \\
& +\frac{(2 \pi)^{4}}{2} \int d \Phi_{2} F_{\pi}^{V, \alpha}(s) \times T_{\pi \pi}^{*}(s, t) \\
& +\frac{(2 \pi)^{4}}{2} \int d \Phi_{3} F_{\pi}^{V, \gamma}(s, t) T_{\pi \pi}^{\gamma *}\left(s,\left\{t_{i}\right\}\right)
\end{aligned}
$$

\Rightarrow need $T_{\pi \pi}^{\alpha}$ as well as $T_{\pi \pi}^{\gamma}$ and $F_{\pi}^{V, \gamma}$ as input
The DR for $F_{\pi}^{V, \alpha}(s)$ takes the form of an integral equation

Outline

Introduction

Illustration of the approach: the forward-backward asymmetry in $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$

Dispersive approach to radiative corrections to $\pi \pi$ scattering

Dispersive approach to FSR in $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$

Conclusions and outlook

Forward-backward asymmetry

$$
\begin{gathered}
\frac{d \sigma_{0}}{d z}=\left.\left.\frac{\pi \alpha^{2} \beta^{3}}{4 s}\left(1-z^{2}\right)\right|_{\pi} ^{v}(s)\right|^{2}, \quad \beta=\sqrt{1-\frac{4 M_{\pi}^{2}}{s}}, \quad z=\cos \theta \\
A_{\text {FB }}(z)=\frac{\frac{d \sigma}{d z}(z)-\frac{d \sigma}{d z}(-z)}{\frac{d \sigma}{d z}(z)+\frac{d \sigma}{d z}(-z)} \\
\left.\frac{d \sigma}{d z}\right|_{C \text {-odd }}=\frac{d \sigma_{0}}{d z}\left[\delta_{\text {soft }}\left(m_{\gamma}^{2}, \Delta\right)+\delta_{\text {virt }}\left(m_{\gamma}^{2}\right)\right]+\left.\frac{d \sigma}{d z}\right|_{\text {hard }}(\Delta) \\
\delta_{\text {soft }}=\frac{2 \alpha}{\pi}\left\{\log \frac{m_{\gamma}^{2}}{4 \Delta^{2}} \log \frac{1+\beta z}{1-\beta z}+\log \left(1-\beta^{2}\right) \log \frac{1+\beta z}{1-\beta z}+\ldots\right\}
\end{gathered}
$$

Calculation of $\delta_{\text {virt }}$ in the 1π-exchange approximation

- cut the diagrams in the t (or u) channel

- represent the subamplitude $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$dispersively

$$
\frac{F_{\pi}^{V}(s)}{s}=\frac{1}{s-m_{\gamma}^{2}}-\frac{1}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\operatorname{Im} F_{\pi}^{V}\left(s^{\prime}\right)}{s^{\prime}} \frac{1}{s-s^{\prime}}
$$

- which leads to

$$
\begin{aligned}
\delta_{\text {virt }} & =\bar{\delta}_{\text {virt }}\left(m_{\gamma}^{2}, m_{\gamma}^{2}\right)-\frac{1}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\operatorname{Im} F_{\pi}^{V}\left(s^{\prime}\right)}{s^{\prime}}\left[\bar{\delta}_{\text {virt }}\left(s^{\prime}, m_{\gamma}^{2}\right)+\bar{\delta}_{\text {virt }}\left(m_{\gamma}^{2}, s^{\prime}\right)\right] \\
& +\frac{1}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\operatorname{Im} F_{\pi}^{V}\left(s^{\prime}\right)}{s^{\prime}} \frac{1}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime \prime} \frac{\operatorname{Im} F_{\pi}^{V}\left(s^{\prime \prime}\right)}{s^{\prime \prime}} \bar{\delta}_{\text {virt }}\left(s^{\prime}, s^{\prime \prime}\right)
\end{aligned}
$$

Calculation of $\delta_{\text {virt }}$ in the 1π-exchange approximation

GC, Hoferichter, Monnard, Ruiz de Elvira (22)

$$
\begin{aligned}
& \bar{\delta}_{\text {virt }}=-\frac{\operatorname{Re} F_{\pi}^{V}(s)}{2 \beta^{2} s\left(1-z^{2}\right)\left|F_{\pi}^{V}(s)\right|^{2}} \frac{\alpha}{\pi} \\
& \times \operatorname{Re}\left[4 t\left(M_{\pi}^{2}-t\right)\left(C_{0}\left(m_{e}^{2}, t, M_{\pi}^{2}, s^{\prime}, m_{e}^{2}, M_{\pi}^{2}\right)+C_{0}\left(m_{e}^{2}, t, M_{\pi}^{2}, s^{\prime \prime}, m_{e}^{2}, M_{\pi}^{2}\right)\right)\right. \\
&-4 t\left(s C_{0}\left(m_{e}^{2}, s, m_{e}^{2}, m_{e}^{2}, s^{\prime}, s^{\prime \prime}\right)-t C_{0}\left(M_{\pi}^{2}, s, M_{\pi}^{2}, M_{\pi}^{2}, s^{\prime}, s^{\prime \prime}\right)\right) \\
&+4\left(M_{\pi}^{2}-t\right)\left(\left(M_{\pi}^{2}-t\right)^{2}+M_{\pi}^{4}+t\left(s^{\prime}+s^{\prime \prime}-u\right)\right) \\
&\left.\quad \times D_{0}\left(m_{e}^{2}, m_{e}^{2}, M_{\pi}^{2}, M_{\pi}^{2}, s, t, s^{\prime}, m_{e}^{2}, s^{\prime \prime}, M_{\pi}^{2}\right)-(t \leftrightarrow u)\right] \\
&+(\operatorname{Re} \rightarrow \mathrm{Im})
\end{aligned}
$$

Numerical analysis

GVMD describes well preliminary CMD3 data

Numerical analysis

Figure courtesy of F. Ignatov

Outline

Introduction
 Illustration of the approach: the forward-backward asymmetry in $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$

Dispersive approach to radiative corrections to $\pi \pi$ scattering

Dispersive approach to FSR in $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$

Conclusions and outlook

$\pi \pi$ scattering amplitude in the isospin limit

Phenomenological representation of $A(s, t, u)$ below $\sim 1 \mathrm{GeV}$

$$
A(s, t, u)=A(s, t, u)_{S P}+A(s, t, u)_{d}
$$

where $A_{S P}$ is the unitarity contribution of S and P waves

$$
A(s, t, u)_{S P}=\frac{32 \pi}{3}\left\{W^{0}(s)-W^{2}(s)+\frac{9}{2}(s-u) W^{1}(t)+\frac{3}{2} W^{2}(t)+(t \leftrightarrow u)\right\}
$$

and

$$
\begin{aligned}
W^{0}(s) & =\frac{a_{0}^{0} s}{4 M_{\pi}^{2}}+\frac{s\left(s-4 M_{\pi}^{2}\right)}{\pi} \int_{4 M_{\pi}^{2}}^{s_{2}} d s^{\prime} \frac{\operatorname{Im} t_{0}^{0}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-4 M_{\pi}^{2}\right)\left(s^{\prime}-s\right)} \\
W^{1}(s) & =\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{s_{2}} d s^{\prime} \frac{\operatorname{Im} t_{1}^{1}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-4 M_{\pi}^{2}\right)\left(s^{\prime}-s\right)} \\
W^{2}(s) & =\frac{a_{0}^{2} s}{4 M_{\pi}^{2}}+\frac{s\left(s-4 M_{\pi}^{2}\right)}{\pi} \int_{4 M_{\pi}^{2}}^{s_{2}} d s^{\prime} \frac{\operatorname{Im} t_{0}^{2}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-4 M_{\pi}^{2}\right)\left(s^{\prime}-s\right)}
\end{aligned}
$$

$\pi \pi$ scattering amplitude in the isospin limit

Phenomenological representation of $A(s, t, u)$ below $\sim 1 \mathrm{GeV}$

$$
A(s, t, u)=A(s, t, u)_{s P}+A(s, t, u)_{d}
$$

where $A_{S P}$ is the unitarity contribution of S and P waves

$$
A(s, t, u)_{S P}=\frac{32 \pi}{3}\left\{W^{0}(s)-W^{2}(s)+\frac{9}{2}(s-u) W^{1}(t)+\frac{3}{2} W^{2}(t)+(t \leftrightarrow u)\right\}
$$

where $t_{\ell}^{\prime}(s)$ are partial wave projections of isospin amplitudes

$$
\begin{array}{rlrl}
T^{0}(s, t, u) & =3 A(s, t, u)+A(t, u, s)+A(u, s, t) \\
T^{1}(s, t, u) & = & A(t, u, s)-A(u, s, t) \\
T^{2}(s, t, u) & = & A(t, u, s)+A(u, s, t)
\end{array}
$$

$\pi \pi$ scattering amplitude in the isospin limit

Phenomenological representation of $A(s, t, u)$ below $\sim 1 \mathrm{GeV}$

$$
A(s, t, u)=A(s, t, u)_{s P}+A(s, t, u)_{d}
$$

where $A_{S P}$ is the unitarity contribution of S and P waves

$$
A(s, t, u)_{S P}=\frac{32 \pi}{3}\left\{W^{0}(s)-W^{2}(s)+\frac{9}{2}(s-u) W^{1}(t)+\frac{3}{2} W^{2}(t)+(t \leftrightarrow u)\right\}
$$

$A_{d}=$ effect of higher waves and higher energies
For $\sqrt{s}<1 \mathrm{GeV}$ small and smooth contribution \Rightarrow polynomial

We need to consider three different effects:

1. strong isospin breaking: effects proportional to $\left(m_{u}-m_{d}\right)$
2. effects proportional to $M_{\pi^{+}}-M_{\pi^{0}}$
3. effects due to photon exchanges

Each of them can be considered separately from the other two

$\pi \pi$ scattering amplitude away from the isospin limit

We need to consider three different effects:

1. strong isospin breaking: effects proportional to $\left(m_{u}-m_{d}\right)$
2. effects proportional to $M_{\pi^{+}}-M_{\pi^{0}}$
3. effects due to photon exchanges

Each of them can be considered separately from the other two
At low energy effects 1 . are small $\sim O\left(\left(m_{u}-m_{d}\right)^{2}\right)$
At higher energies they generate $\pi^{0}-\eta$ as well as $\rho-\omega$ mixing
These can be (and are) described phenomenologically (and $\pi^{0}-\eta$ mixing is not relevant for $F_{\pi}^{V}(s)$)

$\pi \pi$ scattering amplitude away from the isospin limit

We need to consider three different effects:

1. strong isospin breaking: effects proportional to $\left(m_{u}-m_{d}\right)$
2. effects proportional to $M_{\pi^{+}}-M_{\pi^{0}}$
3. effects due to photon exchanges

Each of them can be considered separately from the other two
At low energy effects 1 . are small $\sim O\left(\left(m_{u}-m_{d}\right)^{2}\right)$
At higher energies they generate $\pi^{0}-\eta$ as well as $\rho-\omega$ mixing
These can be (and are) described phenomenologically (and $\pi^{0}-\eta$ mixing is not relevant for $F_{\pi}^{V}(s)$)

The rest of the talk concerns the other two

Roy equations away from the isospin limit

First we need to switch from the isospin to the charge basis

$$
\begin{aligned}
T^{c}(s, t, u) & =\frac{1}{3} T^{0}(s, t, u)+\frac{1}{2} T^{1}(s, t, u)+\frac{1}{6} T^{2}(s, t, u) \\
T^{x}(s, t, u) & =\frac{1}{3} T^{0}(s, t, u)-\frac{1}{3} T^{2}(s, t, u) \\
T^{n}(s, t, u) & =\frac{1}{3} T^{0}(s, t, u)+\frac{2}{3} T^{2}(s, t, u)
\end{aligned}
$$

where
$T^{c}:=T\left(\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}\right), T^{x}:=T\left(\pi^{+} \pi^{-} \rightarrow \pi^{0} \pi^{0}\right), T^{n}:=T\left(\pi^{0} \pi^{0} \rightarrow \pi^{0} \pi^{0}\right)$

Roy equations away from the isospin limit

First we need to switch from the isospin to the charge basis

$$
\begin{aligned}
T^{c}(s, t, u) & =\frac{1}{3} T^{0}(s, t, u)+\frac{1}{2} T^{1}(s, t, u)+\frac{1}{6} T^{2}(s, t, u) \\
T^{x}(s, t, u) & =\frac{1}{3} T^{0}(s, t, u)-\frac{1}{3} T^{2}(s, t, u) \\
T^{n}(s, t, u) & =\frac{1}{3} T^{0}(s, t, u)+\frac{2}{3} T^{2}(s, t, u)
\end{aligned}
$$

where
$T^{c}:=T\left(\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}\right), T^{x}:=T\left(\pi^{+} \pi^{-} \rightarrow \pi^{0} \pi^{0}\right), T^{n}:=T\left(\pi^{0} \pi^{0} \rightarrow \pi^{0} \pi^{0}\right)$
and with crossed channels

$$
\begin{aligned}
T^{++}(s, t, u):=T\left(\pi^{+} \pi^{+} \rightarrow \pi^{+} \pi^{+}\right) & =T^{c}(t, u, s) \\
T^{+}(s, t, u):=T\left(\pi^{+} \pi^{0} \rightarrow \pi^{+} \pi^{0}\right) & =T^{x}(t, u, s) .
\end{aligned}
$$

Roy equations away from the isospin limit

First we need to switch from the isospin to the charge basis

$$
\begin{aligned}
T^{c}(s, t, u) & =\frac{1}{3} T^{0}(s, t, u)+\frac{1}{2} T^{1}(s, t, u)+\frac{1}{6} T^{2}(s, t, u) \\
T^{x}(s, t, u) & =\frac{1}{3} T^{0}(s, t, u)-\frac{1}{3} T^{2}(s, t, u) \\
T^{n}(s, t, u) & =\frac{1}{3} T^{0}(s, t, u)+\frac{2}{3} T^{2}(s, t, u)
\end{aligned}
$$

Then adapt (elastic) unitarity relations

$$
\begin{aligned}
& \operatorname{Im} T_{S}(s)=T_{S}(s) \rho(s) T_{S}^{*}(s), \\
& \quad \text { with } T_{S}=\left(\begin{array}{ll}
t_{n, S}(s) & -t_{x, S}(s) \\
-t_{x, S}(s) & t_{c, S}(s)
\end{array}\right) \\
& \rho(s)=\left(\begin{array}{ll}
\sigma_{0}(s) \theta\left(s-4 M_{\pi^{0}}^{2}\right) & 0 \\
0 & 2 \sigma(s) \theta\left(s-4 M_{\pi}^{2}\right)
\end{array}\right)
\end{aligned}
$$

where

$$
\sigma_{0}(s)=\sqrt{1-4 M_{\pi^{0}}^{2} / s}, \quad \sigma(s)=\sqrt{1-4 M_{\pi}^{2} / s}
$$

Roy equations away from the isospin limit

First we need to switch from the isospin to the charge basis

$$
\begin{aligned}
T^{c}(s, t, u) & =\frac{1}{3} T^{0}(s, t, u)+\frac{1}{2} T^{1}(s, t, u)+\frac{1}{6} T^{2}(s, t, u) \\
T^{x}(s, t, u) & =\frac{1}{3} T^{0}(s, t, u)-\frac{1}{3} T^{2}(s, t, u) \\
T^{n}(s, t, u) & =\frac{1}{3} T^{0}(s, t, u)+\frac{2}{3} T^{2}(s, t, u)
\end{aligned}
$$

Then adapt (elastic) unitarity relations

$$
\begin{aligned}
\operatorname{Im} t_{n, s}(s) & =\sigma_{0}(s)\left|t_{n, s}(s)\right|^{2}+2 \sigma(s)\left|t_{x, s}(s)\right|^{2} \\
\operatorname{Im} t_{x, s}(s) & =\sigma_{0}(s) t_{n, s}(s) t_{x, s}^{*}(s)+2 \sigma(s) t_{x, s}(s) t_{c, s}^{*}(s) \\
\operatorname{Im} t_{c, s}(s) & =\sigma_{0}(s)\left|t_{x, s}(s)\right|^{2}+2 \sigma(s)\left|t_{c, s}(s)\right|^{2}
\end{aligned}
$$

where

$$
\sigma_{0}(s)=\sqrt{1-4 M_{\pi^{0}}^{2} / s}, \quad \sigma(s)=\sqrt{1-4 M_{\pi}^{2} / s}
$$

Roy equations away from the isospin limit

This leads to the following Roy eqs.

$$
\begin{aligned}
& T_{S P}^{n}(s, t, u)=32 \pi\left(W_{n, S}^{00}(s)+W_{n, S}^{+-}(s)+(s \leftrightarrow t)+(s \leftrightarrow u)\right) \\
& W_{n, S}^{00}(s)=\frac{a_{n}^{00} s}{4 M_{\pi^{0}}^{2}}+\frac{s\left(s-4 M_{\pi^{0}}^{2}\right)}{\pi} \int_{4 M_{\pi^{0}}^{2}}^{s_{2}} d s^{\prime} \frac{\operatorname{Im} t_{n, S}^{00}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-4 M_{\pi^{0}}^{2}\right)\left(s^{\prime}-s\right)} \\
& W_{n, S}^{+-}(s)=\frac{s\left(s-4 M_{\pi^{0}}^{2}\right)}{\pi} \int_{4 M_{\pi}^{2}}^{s_{2}} d s^{\prime} \frac{\operatorname{Im} t_{n, S}^{+-}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-4 M_{\pi^{0}}^{2}\right)\left(s^{\prime}-s\right)},
\end{aligned}
$$

Roy equations away from the isospin limit

This leads to the following Roy eqs.

$$
\begin{aligned}
T_{S P}^{++}(s, t, u)= & 32 \pi\left[W_{S}^{++}(s)+W_{c, S}^{00}(t)+W_{c, S}^{+-}(t)+W_{c, S}^{00}(u)+W_{c, S}^{+-}(u)\right. \\
& \left.+(s-u) W_{c, P}^{+--}(t)+(s-t) W_{c, P}^{+-}(u)\right] \\
W_{S}^{++}(s)= & \frac{a^{++} s}{4 M_{\pi}^{2}}+\frac{s\left(s-4 M_{\pi}^{2}\right)}{\pi} \int_{4 M_{\pi}^{2}}^{s_{2}} d s^{\prime} \frac{\operatorname{Im} t_{S}^{++}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-4 M_{\pi}^{2}\right)\left(s^{\prime}-s\right)} \\
W_{c, S}^{+-}(s)= & \frac{a_{c}^{+-} s}{4 M_{\pi}^{2}}+\frac{s\left(s-4 M_{\pi}^{2}\right)}{\pi} \int_{4 M_{\pi}^{2}}^{s_{2}} d s^{\prime} \frac{\operatorname{Im} t_{c, S}^{+-}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-4 M_{\pi}^{2}\right)\left(s^{\prime}-s\right)} \\
W_{c, S}^{00}(s)= & \frac{s\left(s-4 M_{\pi}^{2}\right)}{\pi} \int_{4 M_{\pi^{0}}^{2}}^{s_{2}} d s^{\prime} \frac{\operatorname{lm} t_{c, S}^{00}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-4 M_{\pi}^{2}\right)\left(s^{\prime}-s\right)} \\
W_{c, P}^{++-}(s)= & \frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{s_{2}} d s^{\prime} \frac{3 \operatorname{lm} t_{c, P}^{+-}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-4 M_{\pi}^{2}\right)\left(s^{\prime}-s\right)} .
\end{aligned}
$$

Via crossing this provides also a representation for T^{c}

Roy equations away from the isospin limit

This leads to the following Roy eqs.

$$
\begin{aligned}
T_{S P}^{x}(s, t, u)= & 32 \pi\left[W_{x, S}^{+-}(s)+W_{x, S}^{00}(s)+W_{S}^{+0}(t)+W_{S}^{+0}(u)\right. \\
& \left.+\left(t(s-u)+\Delta_{\pi}^{2}\right) W_{P}^{+0}(t)+\left(u(s-t)+\Delta_{\pi}^{2}\right) W_{P}^{+0}(u)\right] \\
W_{x, S}^{+-}(s)= & \frac{a_{x}^{+-} s}{4 M_{\pi}^{2}}+\frac{s\left(s-4 M_{\pi}^{2}\right)}{\pi} \int_{4 M_{\pi}^{2}}^{s_{2}} d s^{\prime} \frac{\operatorname{Im} t_{x, S}^{+-}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-4 M_{\pi}^{2}\right)\left(s^{\prime}-s\right)} \\
W_{x, S}^{00}(s)= & \frac{s\left(s-4 M_{\pi}^{2}\right)}{\pi} \int_{4 M_{\pi^{0}}^{2}}^{s_{2}} d s^{\prime} \frac{\operatorname{Im} t_{x, S}^{00}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-4 M_{\pi}^{2}\right)\left(s^{\prime}-s\right)} \\
W_{S}^{+0}(s)= & \frac{a_{c}^{+0} s}{4 \bar{M}_{\pi}^{2}}+\frac{s\left(s-4 \bar{M}_{\pi}^{2}\right)}{\pi} \int_{4 \bar{M}_{\pi}^{2}}^{s_{2}} d s^{\prime} \frac{\operatorname{Im} t_{s}^{+0}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-4 \bar{M}_{\pi}^{2}\right)\left(s^{\prime}-s\right)} \\
W_{P}^{+0}(s)= & \frac{1}{\pi} \int_{4 \bar{M}_{\pi}^{2}}^{s_{2}} d s^{\prime} \frac{3 \operatorname{lm} t_{P}^{+0}\left(s^{\prime}\right)}{\lambda\left(s^{\prime}, M_{\pi}^{2}, M_{\pi^{0}}^{2}\right)\left(s^{\prime}-s\right)}, \\
& \Delta_{\pi}:=M_{\pi}^{2}-M_{\pi^{0}}^{2} \bar{M}_{\pi}:=\left(M_{\pi}+M_{\pi^{0}}\right) / 2
\end{aligned}
$$

Roy eqs. and $M_{\pi}^{2}-M_{\pi^{0}}^{2}$ effects

- Input for Roy eqs.:

Imt $t_{\ell}^{\prime}(s)$ above $\sqrt{s_{1}} \sim 1.15 \mathrm{GeV}$ and scattering lengths

- numerical solutions \Rightarrow partial waves for $4 M_{\pi}^{2} \leq s \leq s_{1}$
- assume: input above s_{1} does not change for $\Delta_{\pi} \neq 0$
- starting point: solutions in the isospin limit; reevaluating the dispersive integrals with the thresholds \Rightarrow calculation of the desired effects
- the procedure can be iterated
- the effect on $F_{\pi}^{V}(s)$ is small (the $\pi^{0} \pi^{0}$ only appears in the t-channel of the $\pi \pi$ amplitude in the unitarity relation)

Roy eqs. and photon-exchange effects

Photon-exchange diagrams are $O(\alpha)$ effects not included in the Roy eqs.

$$
\begin{aligned}
T_{B}(t, s, u):= & \pi^{-}=4 \pi \alpha \frac{s-u}{t} F_{\pi}^{V}(t)^{2} \\
& \pi^{+} \\
& \pi_{B}^{c}(s, t, u)=T_{B}(t, s, u)+T_{B}(s, t, u)
\end{aligned}
$$

Roy eqs. and photon-exchange effects

Photon-exchange diagrams are $O(\alpha)$ effects not included in the Roy eqs.

$$
\begin{aligned}
T_{B}(t, s, u):= & \pi^{-}=4 \pi \alpha \frac{s-u}{t} F_{\pi}^{v}(t)^{2} \\
& \pi^{+}(s, t, u)=T_{B}(t, s, u)+T_{B}(s, t, u)
\end{aligned}
$$

- Adding such a contribution to the T^{C} amplitude upsets the unitarity relations for all amplitudes
- we are interested in corrections only up to $O(\alpha)$
\Rightarrow set up an iterative scheme

Roy eqs. and photon-exchange effects: 1. iteration

$$
T_{D}^{c}(s, t, u):=
$$

$$
T_{D}^{x}(s, t, u):=
$$

"Triangle diagrams" \Rightarrow topology of box diagrams \Rightarrow double-spectral representation

Roy eqs. and photon-exchange effects: 1. iteration

$$
\begin{aligned}
& T_{D}^{x}(s, t, u):=
\end{aligned}
$$

"Triangle diagrams" \Rightarrow topology of box diagrams \Rightarrow double-spectral representation

Starting point for further iterations:

$$
\begin{aligned}
T_{1}^{c}(s, t, u) & =T_{0}^{C}(s, t, u)+T_{B}^{c}(s, t, u)+T_{D}^{c}(s, t, u) \\
T_{1}^{x}(s, t, u) & =T_{0}^{x}(s, t, u) \\
T_{1}^{n}(s, t, u) & =T_{0}^{n}(s, t, u)
\end{aligned}
$$

Roy eqs. and photon-exchange effects: 2. iteration

Diagrams have to be cut in all possible ways:
\Rightarrow contributions from subamplitudes with real photons

Roy eqs. and photon-exchange effects: 2. iteration

Diagrams have to be cut in all possible ways:
\Rightarrow contributions from subamplitudes with real photons
Expression after further iterations:

$$
\begin{array}{rlrl}
T_{1}^{c}(s, t, u) & =T_{0}^{c}(s, t, u)+T_{B}^{c}(s, t, u)+T_{D}^{c}(s, t, u)+\sum_{k=2} R_{k}^{c}(s, t, u) \\
T_{1}^{x}(s, t, u) & =T_{0}^{x}(s, t, u) & +T_{D}^{X}(s, t, u)+\sum_{k=2} R_{k}^{x}(s, t, u) \\
T_{1}^{n}(s, t, u) & =T_{0}^{n}(s, t, u) & +\sum_{k=2} R_{k}^{n}(s, t, u)
\end{array}
$$

Roy eqs. and photon-exchange effects: comments

- starting from the 2. iteration the evaluation of the R_{k+1}^{i} is done as follows:

1. project the R_{k}^{i} amplitudes onto partial waves
2. insert these into the unitarity relations combined with the projections of T_{0}^{i}
3. add the contribution of subdiagrams with real photons
4. solve the corresponding dispersion relation

- subtraction constants can be fixed by matching to ChPT
- iteration number k corresponds to chiral $O\left(p^{2 k}\right)$
- ChPT $\pi \pi$ amplitude with RC known to one loop knecht, Nehme (02) \Rightarrow subtraction constants for all $R_{k}^{i}, k \geq 2$ can be set to zero

Outline

```
Introduction
Illustration of the approach: the forward-backward asymmetry
in }\mp@subsup{e}{}{+}\mp@subsup{e}{}{-}->\mp@subsup{\pi}{}{+}\mp@subsup{\pi}{}{-
Dispersive approach to radiative corrections to }\pi\pi\mathrm{ scattering
```

Dispersive approach to FSR in $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$

Conclusions and outlook

Dispersive treatment of FSR in $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$

$$
\begin{aligned}
\frac{\operatorname{Disc} F_{\pi}^{V, \alpha}(s)}{2 i} & =\frac{(2 \pi)^{4}}{2} \int d \Phi_{2} F_{\pi}^{V}(s) \times T_{\pi \pi}^{\alpha *}(s, t) \\
& +\frac{(2 \pi)^{4}}{2} \int d \Phi_{2} F_{\pi}^{V, \alpha}(s) \times T_{\pi \pi}^{*}(s, t) \\
& +\frac{(2 \pi)^{4}}{2} \int d \Phi_{3} F_{\pi}^{V, \gamma}(s, t) T_{\pi \pi}^{\gamma *}\left(s,\left\{t_{i}\right\}\right)
\end{aligned}
$$

Long digression $\Rightarrow T_{\pi \pi}^{\alpha}$
Approximation: only 2π intermediate states for $F_{\pi}^{V, \gamma}$ and T_{π}^{γ} :

All subamplitudes known $\Rightarrow F_{\pi}^{V, \gamma}$ and $T_{\pi \pi}^{\gamma} \checkmark$

Evaluation of $F_{\pi}^{V, \alpha}$

Having evaluated all the following diagrams

Evaluation of $F_{\pi}^{V, \alpha}$

Having evaluated all the following diagrams

the results for $\sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}(\gamma)\right)$ look as follows:
Preliminary!

Evaluation of $F_{\pi}^{V, \alpha}$

Having evaluated all the following diagrams

the results for $\sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}(\gamma)\right)$ look as follows:
Preliminary!

Impact on a_{μ}^{HVP}

Ideally: use calculated RC in the data analysis (future?).
Quick estimate of the impact:

1. remove RC from the measured $\sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}(\gamma)\right)$
2. fit with the dispersive representation for $F_{\pi}^{\vee}(s)$
3. insert back the RC

The impact on a_{μ}^{HVP} is evaluated by comparing to the result obtained by removing RC with $\eta(s)$ calculated in sQED

$$
10^{11} \Delta a_{\mu}^{\mathrm{HVP}}= \begin{cases}10.2 \pm 0.5 \pm 5 & \text { FsQED } \\ 10.5 \pm 0.5 \pm(?) & \text { triangle } \\ 13.2 \pm 0.5 & \text { full }\end{cases}
$$

Outline

Introduction
Illustration of the approach: the forward-backward asymmetryin $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
Dispersive approach to radiative corrections to $\pi \pi$ scattering
Dispersive approach to FSR in $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
Conclusions and outlook

Conclusions and outlook

- We have developed a dispersive formalism for evaluating RC to the $\pi \pi$ scattering amplitude and $F_{\pi}^{V}(s)$
work in progress GC, J. Monnard, J. Ruiz de Elvira
- approximation: include only up to 2π intermediate states \Rightarrow finite system of equations (numerical solutions)
- preliminary evaluation of the corrections to $F_{\pi}^{V}(s)$ and a_{μ}^{HVP} shows no unexpectedly large effects J. Monnard, PhD thesis, 2021
- other than in the forward-backward asymmetry
- final goal: ready-to-use code which can be implemented in MC and used in data analysis
- we plan to apply the same approach to $\tau \rightarrow \pi \pi \nu_{\tau}$

Backup Slides

$\gamma \pi \rightarrow 3 \pi$

$$
\gamma \pi^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-}
$$

$\gamma \pi \rightarrow 3 \pi$

