Workshop on Flavour Changing and Conserving Processes (FCCP2022) Anacapri, September 22, 2022

Status of **R** and gamma-gamma Measurements

and Structure of Matter

FOR Fundamental Interaction

Achim Denig Institute for Nuclear Physics Johannes Gutenberg University Mainz

Absolute contribution: dominated by QED

Uncertainty: dominated by strong interactions

- Hadronic Vacuum Polarization (693.1 \pm 4.0 \cdot 10⁻¹⁰)
- Hadronic Light-by-Light (9.2 \pm 1.8 \cdot 10⁻¹⁰)

Physics Reports 887 (2020) 1-166

Talks Winter Knecht

2

Absolute contribution: dominated by QED

Uncertainty: dominated by strong interactions

- Hadronic Vacuum Polarization (693.1 \pm 4.0 \cdot 10⁻¹⁰)
- Hadronic Light-by-Light (9.2 \pm 1.8 \cdot 10⁻¹⁰)

Physics Reports 887 (2020) 1-166

Talks Winter Knecht

3

Hadronic Vacuum Polarization (HVP)

Estimate of (g-2) Theory Initiative based on dispersive approach (including higher orders): (693.1 ± 4.0) \cdot 10⁻¹⁰ was (\cong 687 ... 694 ± 2.4 ... 4.1) \cdot 10⁻¹⁰

Optical theorem (unitarity) and analyticity:

low energy contributions especially important!

• Initial State Radiation (KLOE, BABAR, BESIII, ...)

Systematic Uncertainties on $\rho(770)$ peak

- ISR BABAR 0.5%
- ISR KLOE 0.6%
- ISR BESIII 0.9%
- Energy Scan CMD2 0.8%*
 - * limited in addition by statistics

Achim Denig

Most recent evaluations of HVP:

- Davier, Höcker, Malaescu, Zhang (DHMZ)
 - averaging via 2nd ord. polynomial interpolation
 - systematic correlat. propagated via pseudo-data (MC)
- Keshavarzi, Nomura, Teubner (KNT)
 - data subjected to a clustering procedure
 - fit over all data sets taking into account correlations

 Merging of KNT, DHMZ estimates + input from ChPT/dispersive fits: CHHKS for 2π, 3π channels; determinations from FJ17 and BDJ10 (assuming hadronic models in global fit) not considered

	DHMZ19	KNT19	Difference	
$\pi^+\pi^-$	507.85(0.83)(3.23)(0.55)	504.23(1.90)	3.62):-(
$\pi^+\pi^-\pi^0$	46.21(0.40)(1.10)(0.86)	46.63(94)	-0.42	
$\pi^+\pi^-\pi^+\pi^-$	13.68(0.03)(0.27)(0.14)	13.99(19)	-0.31	
$\pi^+\pi^-\pi^0\pi^0$	18.03(0.06)(0.48)(0.26)	18.15(74)	-0.12	
K^+K^-	23.08(0.20)(0.33)(0.21)	23.00(22)	0.08	
$K_S K_L$	12.82(0.06)(0.18)(0.15)	13.04(19)	-0.22	
$\pi^0\gamma$	4.41(0.06)(0.04)(0.07)	4.58(10)	-0.17	
Sum of the above	626.08(0.95)(3.48)(1.47)	623.62(2.27)	2.46	
1.8, 3.7] GeV (without $c\bar{c}$)	33.45(71)	34.45(56)	-1.00	
$J/\psi, \psi(2S)$	7.76(12)	7.84(19)	-0.08	
[3.7,∞) GeV	17.15(31)	16.95(19)	0.20	
Total $a_{\mu}^{\text{HVP, LO}}$	$694.0(1.0)(3.5)(1.6)(0.1)_{\psi}(0.7)_{\text{DV+QCD}}$	692.8(2.4)	1.2	> reasonable agreement

 $→ a_{\mu}^{HVP,LO} = 693.1(2.8) _{exp}(2.8) _{syst}(0.7)_{pQCD} = 693.1(4.0) \times 10^{-10}$ Whitepaper estimate experimental uncertainties: domitated by 2π uncertainty Achim Denig BABAR, respectively BABAR, respectively

Discrepancy with Lattice QCD Windows Estimate

Serious deviation between data-driven evaluation of a_{μ}^{HVP} and intermediate-distance Lattice-QCD window

- weight function allows to relate Lattice-QCD window to total hadronic cross section
- weight function peaked at ~1.5 GeV
- ca. 1/3 of total a_{μ}^{HVP} , of which 60% given by $\pi^+\pi^-$
- selects ~28% of absolute π⁺π⁻ contribution
- need to explain deviation of 7 ... 8×10^{-10}

Explanation 1: Upscale π + π - data by >5% (flat), however this causes conflict with BMW result for full a_{μ}^{HVP}

Explanation 2: Underestimated contributions > 1 GeV (higher multipl.), however would need to be large effect; hadronic particle not being observed by experiment, e.g. Sexaquark? arxiv:2206.13460

Explanation 3: Common systematic effect in Lattice-QCD and/or underestimated BMW21 result for full a_{μ}^{HVP}

Hadronic Cross Section Data after Whitepaper

• New SND analysis of $\pi^+\pi^-$ channel, (525 < \sqrt{s} < 883) MeV

\rightarrow	systematic uncertainty	>	600 MeV: 0.8%
	systematic uncertainty	-	000 1010 0.070

Measurement	$a_\mu(\pi\pi) \times 10^{10}$
This work	$409.79 \pm 1.44 \pm 3.87$
SND06	$406.47 \pm 1.74 \pm 5.28$
BaBar	$413.58 \pm 2.04 \pm 2.29$
KLOE	$403.39 \pm 0.72 \pm 2.50$

- New BABAR data on $\pi^+\pi^-4\pi^0$, $2(\pi^+\pi^-)3\pi^0$, *KK* $\pi\pi\pi$
- New BABAR analysis of $\pi^+\pi^-\pi^0$ channel, (0.62 < \sqrt{s} < 3.5) GeV
 - → systematic uncertainty < 1.1 GeV: 1.3%
 - → fit to $M_{3\pi}$ including $\omega(782)$, $\omega(1420)$, $\omega(1680)$, $\phi(1020)$, $\rho(770)$

New BABAR-Analysis of $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

Analysis strategy: select all events with ≥ 2 tracks

- Reject back-to-back 2-prong events (Bhabha, Di-Muons)
- Remaining background from ISR and QED events ($e^+e^- \rightarrow e^+e^-/\mu^+\mu^-$) subtracted from MC

Two independent inclusive Monte-Carlo Generators

Fully theoretical MC production

- Development based on Jetset for low-energy experiments (LundAreaLaw)
- Simulation of resonances and continuum
- ISR and vacuum polarization implemented
- Kinematics of final hadrons tuned by experimental distributions (N_{trk}, N_γ, cosΘ, ...)

MC generator almost entirelybased on exptl. data

- PHOKHARA event generator
 (10 low-multiplicity channels 2π, 3π, 4π, NN, ...)
 fitted to exptl. data
- CONEXC based purly on exptl. data (phase space),
 47 channels

Remaining channels simulated by LUARLW

After years of developments, tuning, and cross checks a deviation of better than 2.3% (including ISR) between the hybrid generator and LUARLW is found (major achievement)

JG

New R_{incl} Measurement from BESIII

- Energy range covered: $2.2 < \sqrt{s} < 3.7 \text{ GeV}$
- Statistical uncertainty <0.5%
 Systematic uncertainty <2.6% below 3.1 GeV ~3.0% above
- Above 3.4 GeV deviation observed with:
 - KEDR/Novosibirsk on the level of 1.9 σ
 - pQCD theory on the level of 2.7σ

World's most precise R_{incl} measurement ! Some deviations from pQCD seen ?!

Next steps: 1) Analysis of high statistics energy scan in entire range 2.0 – 4.6 GeV

2) Attempt to measure R_{incl} using ISR with dramatically increased efficiency of MC generator (from ~65% to >90%) → reduced model dependence

Hadronic Light-by-Light Contribution (HLbL)

Estimate of (g-2) Theory Initiative: (9.2 ± 1.8) · 10⁻¹⁰ was (10.5 ± 2.6) · 10⁻¹⁰

Exp. Input ! Transition Form Factors F(Q²) below ~ 2 GeV²

Experimental challenges:

Now: measure single-virtual TFF and compare with theory assumption! Future: provide measurements of double-virtual TFFs

Problem: double-virtual TFFs needed, for which no measurements exist yet!

Way out: use theory calculations for double-virtual TFFs:

- Lattice QCD calculation
- Dispersive analyses

EXPERIMENT *at the tau-charm Factory BEPC-II*

World's by far largest τ -charm dataset in e^+e^- annihilation:

- Symmetric *e*⁺*e*⁻ collider
- Located at the BEPCII collider (Beijing, China)
- CMS energy:2 GeV to 5 GeV
- $\bullet \quad \mbox{Maximum luminosity:} 1 \times 10^{33}\,\mbox{cm}^{-2}\,\mbox{s}^{-1}$
- 93% coverage of the solid angle

HLbL and Impact of BESIII Data

Uncertainties for pseudoscalar and π – box ⊫⊣ <mark>₽€</mark>S∏ π^0 , η , η' -poles contributions significantly reduced π , K-loops/boxes \rightarrow Validate theoretical TFFs with unique BESIII data set! BESI S-wave $\pi\pi$ H B€SI Currently, axial vector, scalar, and tensor contributions scalars & tensors together with short distance contributions limiting B€SII axial vectors overall accuracy u, d, s-loops \rightarrow BESIII measurements of axial vector, scalar, and tensor TFFs c-loop

In very many cases no previous TFF measurements for $Q^2 < 2 \text{ GeV}^2$.

Physics Reports 887 (2020) 1-166

Ó

-20

20

60

 $a_{\mu}^{ ext{HLbL}} imes 10^{11}$

80

100

Selection criteria

- 1 electron (positron) detected
- 1 positron (electron) along beam axis
- Meson fully reconstructed
- ightarrow cut on angle of missing momentum

Momentum transfer

- tagged: $Q^2 = -q_1^2 = -(p p')^2$ \rightarrow Highly virtual photon
- untagged: $q^2 = -q_2^2 \sim 0 \text{ GeV}^2$ \rightarrow Quasi-real photon

EKHARA event generator

$$Q^2 = 4 \cdot E \cdot E' \cdot \sin^2(\theta/2)$$

18

PPNP107 (2019) 20

- $\sqrt{s}_{\text{BESIII}} = 3.77 \text{ GeV}$, L= 2.9/fb
- Unprecedented accuracy of BESIII
- Relevant Q² range for HLbL
- → Very good agreement with recent dispersive analysis and of Lattice QCD calculation
- Q² range below 0.3 GeV² accessible at BESIII with data from lower c.m. energy

similar results for η and η ' TFFs

Upcoming BES III Analysis: $\gamma \gamma^* \rightarrow \pi^+ \pi^-$

- Transition form factor for process $\gamma \gamma^* \rightarrow \pi^+ \pi^-$ never measured before; only untagged measurements with Q²=0 GeV² existing
- BESIII aims for:
 - first TFF measurement in Q^2 range 0.1 \dots 3 GeV^2 in single-tag analysis
 - full coverage of the mass range up to 2 GeV
 - full coverage of the helicity angle
- Analysis in a very advanced state (7/fb):
 - 7/fb of data at cms energies \geq 3.77 GeV
 - construction of MC generator Ekhara (H. Czyz)
 - detailed phenomenology program @ Mainz
 - subtraction of background channels !

BES III Analysis: $\gamma \gamma^* \rightarrow \pi^+ \pi^-$

- Design study recently completed
 - single-tag analysis
 - $\label{eq:f1} -f_1(1285) \rightarrow \pi^+\pi^-\eta \; (\eta \rightarrow \gamma\gamma)$
 - 10/fb of data at cms energies > 4 GeV
- BESIII aims for:
 - TFF measurement in Q^2 range 0.24 ... 3 GeV^2
 - separation of LT and TT contribution by means of helicity angle
 - improved accuracy wrt. existing L3/LEP data

below 6 GeV² (4 data points)

 In addition investigations of higher lying states in preparation (different decay channels)

Conclusions

Thank you !