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Context
Neutrons are one of the most produced particles nearby particle 
accelerators :

Hadrontherapy :
● Neutrons produced in the accelerator 

head and patient body itself

● Neutron dose is badly or not even 
calculated by TPS (out-of-field dose)

● Need to better estimate the secondary 
neutrons production (measurements + 
calculations) 

IBA Proteus series



  4 / 30

Context

Industrial irradiation :
● Increasing use of linear accelerators :

– Photo-nuclear activation >2 MeV

– Risk of contact/ingestion of 
activated nucleids 

● Controls by gamma spectrometry but 
some detection limits (counting time, 
etc.)

Direct and indirect activation : ɣ→n  and n→ɣ

204Pb (ɣ,n) 203Pb 13C (n,ɣ) 14C

Measurements completed by Monte Carlo simulations
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Context
Discrepancies between Monte-Carlo predictions and actual data, 
depending of nuclei and energy

12C at 400 MeV/nucleon 
P.-E. Tsai et al., 2018
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Context

Bonner spheres are a standard 
for neutron spectrometry but :

● Cumbersome for medical or 
industrial facilities 

● Saturation issues
● Offline analysis

  Development of dedicated 
detectors to comply with these 
constraints
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Context

MONDO

20-400 MeV

ε ~ 10 ²-10 ¹⁻ ⁻

RIPTIDE

Wide energy range, function 
of scintillator choice + size

ε ~ 10 ¹⁻

Nested Neutron Spectrometer

Similar to Bonner Spheres, 
works in current-mode for 

signal acquisition
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Recoil proton telescope

● σ/E < 5 %
● Compactness (10×10×8 cm³)
● For ‘high’ fluxes (<10⁸ cm⁻².s⁻¹)
● Real time measurements

Detector commissioned by the IRSN for metrology 
of mono-energetic neutron beams from 
4 to 30 MeV at their AMANDE facility :

Measurements at the 
AMANDE facility
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Principle

● (CH2)n converter

● 3 FastPixN (pixelated CMOS)
● Si(Li) diode 3 mm thick
● Another thin diode for 

background elimination

Measurement of the scattering angle + energy of the recoil proton :
Eneutron = Eproton/cos²θ

Sketch of the telescope
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FastPixN CMOS sensors

● Pixel pitch of 50 µm → negligible (σ
θ
)pixel

● 50 µm thick – protons down to 4 MeV and up 
to 30 MeV

● 4 bits flash ADC → 15 channels  for various 
proton energies deposit (10 - 200 keV/pixel)

●  A frame every 12 µs : up to ~10⁴ protons/s 
(~10⁸ neutrons/s)

128×128 pixelated CMOS
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Simulation & analysis

● Verification of the energy reconstruction 
algorithm 

● Understand the origin and intensity of 
different background sources

● Performances estimation (efficiency, 
background rejection, impact of 
neutron flux, expected resolution, etc.)

Geant4 (CERN) simulation of the detector :

GEANT4 simulation of 
the whole detector
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Background elimination

1H(n,p)

 Aluminium
foil

Polyethylene 
converter

FastPixN
Thin diode

Diode

● Proton escape
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Background elimination

1H(n,p)

 Aluminium
foil

Polyethylene 
converter

FastPixN
Thin diode

Diode

● Proton escape
● Simultaneous 

direct hit in the 
diode

● Both eliminated 
with a ΔE/E 
verification

29Si(n,α)
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Simulation results at 20 MeV with a 500 µm converter

Background elimination
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nt
s

Neutron energy [MeV]

No cut
Cut applied
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Background elimination

27Al(n,n+p)

 Aluminium
foil

Polyethylene 
converter

FastPixN
Thin diode

Diode

● PCBs 
● Diode 
● Aluminium 
● Converter (12C)

● High scattering
● Additional energy 

losses
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Efficiency

● ε naturally increasing 
with converter 
thickness

● ε ~ 10⁻⁵
● Maximum efficiency 

achievable for each 
energy

● Resolution worsening 
with converter 
thickness 
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Efficiency

● ε naturally increasing 
with converter 
thickness

● ε ~ 10⁻⁵
● Maximum efficiency 

achievable for each 
energy

● Resolution worsening 
with converter 
thickness 

3.2 %

6.2 %

10 %

2.5 %

2.8 %

5.9 %
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Neutron energy resolution

Led by angular uncertaintyAlways present, 
even at θ=0
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Neutron energy resolution : proton 
energy

The energy measured by the diode is corrected by energy losses 
in the converter and the sensors : sources of uncertainties

Uncertainties on the average 
energy loss hypothesis

Diode energy 
resolution
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Neutron energy resolution : proton 
energy

Converter of 
thickness e

Hypothesis : neutrons are generated at e/2

→ scattering after e/2 : overestimation

→ scattering before e/2 : underestimation

Thicker converter means better efficiency but worse 
resolution 

overestimation

underestimation
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Neutron energy resolution : conclusion

best achievable resolution

angular dependency from 
0° (best) to ~37° (worst)

● Uncertainty dominated 
by the converter at low 
energies

● Dominated by the diode 
resolution at higher 
energies

Neutron energy resolution with d
conv

= 50 µm
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Diode calibration
The diode calibration has to be as precise as possible BUT sensitive to 
temperature variations and radiation damages over time → it has to be 
reassessed regularly

CyRCE cyclotron (Strasbourg-France) up to 24 MeV
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Diode calibration

Channel number

C
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Raw diode spectrum at AMANDE for 
E

n
 = 7.17 MeV

Raw diode spectrum at E
n
 = 6.03 MeV 

reproduced from B. Mainsbridge et al., 1963
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Diode calibration

Diode calibration made from neutron 
measurements at the AMANDE facility
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Diode calibration

Theoritical and reconstructed spectra of 7.17 MeV at 
AMANDE, normalized to the maximum of each spectrum

● Spectrum peaked on the 
right energy (mean value 
slightly overestimated)

● σ/E = 4.2 % (thick 
converter)
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Conclusion and prospects
● Development of a compact real-time 

neutron spectrometer 
● σ < 5 %
● Simulated performances
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Conclusion and prospects

● Test of in-situ diode calibration method 
using mono-energetic neutron beam

● First reconstructed neutron spectrum
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Conclusion and prospects

● Future experiments :

CAL protontherapy center (Nice, France) Aérial-FEERIX (Strasbourg, France)
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Conclusion and prospects
Improvements for future versions :

(CH
2
)

n
 replacement by a stack of thin 

plastic scintillators :
→ higher efficiency and better resolution
→ improved background events removal

Stack of converters and CMOS planes :
→ extended energy range
→ but even more background events to 
manage

Active 
converter
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Thank you
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