UPDATE ON THE ANALYSIS OF GSI2 ¹⁶O DATA TAKING

A. Alexandrov, V. Boccia, A. Di Crescenzo, G. De Lellis, <u>G. Galati</u>, A. Iuliano, A. Lauria, M. C. Montesi, A. Pastore, V. Tioukov

> Università di Napoli "Federico II", INFN Napoli <u>Università di Bari "Aldo Moro"</u>, INFN Bari

31/05/2022, XII General FOOT Meeting Strasbourg, Amphitheatre Grünewald

Outline

• ECC reconstruction and improvements

- Improvements in tracking algorithms
- ECC reconstructions: GSI1, GSI2, GSI3 (NEW)
- Comparison between: true and reconstructed Monte Carlo - reconstructed Monte Carlo and DATA
- Cross section measurement for GSI1 and GSI2
 - Integrated
 - Differential for fragment's angles
 - Differential for charge

Summary

GSI1 DATA vs MC RECO Comparison @ XI General Meeting

In GSI1 (1mm C target) there were several discrepancies between data and reconstructed MC, that we didn't see in GSI2 (2mm C_2H_4 target).

Hypothesis was that these discrepancies were due to alignment problems

GSI1 - S1⁰ / ⁵B¹F¹⁵O²⁰R²⁵⁺³⁰ ⁵[0].eScaniD.ePlate

_0.**5**000

• Problem not with coordinates alignment, but with angle distributions! The distribution of $\theta_{X/Y}$ of "signal" tracks seemed to be centered on a different mean angle in each plate, probably due to scanning done on different microscopes 10^{5} • Differences between consecutive base-tracks up to ~ 20 mrad, out of tolerances $\xrightarrow{12000}$ match between consecutive base-tracks not found 3000 10⁴ 10000 0.5 2500

$GSI1 - S1 \frac{5}{4F^{5}} \frac{100}{15} \frac{15}{20} \frac{25}{25} \frac{25}{25} \frac{30}{25} \frac{30}{25} \frac{100}{15} \frac{15}{20} \frac{20}{25} \frac{25}{25} \frac{25}{20} \frac{30}{25} \frac{30}{25} \frac{30}{25} \frac{100}{25} \frac{100}{25$

Angles correction implemented in the last stepson glabal alignment
Nove all distributions are centered to the mean of the first plate 105

Merging stacks

- Different reference systems in consecutive stacks both for coordinates and angles
- Efforts to align the two datasets
- New procedure (still to improve) **Example from GSI2 DATA:**

Impact Parameter

s.eTX:s.eScanID.ePlate {abs(s.eTX)<0.05&&abs(s.eTY)<0.05}

-0.02

-0.04

2500

2000

1500

1000

500

s.eScanID.ePlate

Analysis of Oxygen at 200 MeV/n on C and C₂H₄ GSI 1 & GSI2

Number of reconstructed vertices

		GSI1 C target	GSI2 C2H4 target		
MC	Beam particles	18990	19988		
	True vertices	4798	5567		
	Reco vertices	4031	4753		
DATA	Beam particles	19375	20625		
	Data vertices	4086	5136		

Cuts for vertices selection:

• $n \ge 3$, n = number of tracks (parent + daughters)

• At least 2 daughters with at least 3 segments

Daughters' impact parameters distribution

Distributions normalized to beam particles

Carbon

Vertex Plate distribution: MC RECO vs MC

Since at least 3 tracks are required, efficiencies increases when the probability of fully reconstruct the incoming oxygen is higher. Smearing at Bragg peak.

Vertex Plate distribution: DATA vs MC RECO

Trend is confirmed in DATA

Fragments' multiplicity distribution: MC RECO vs MC

Distributions normalized to beam particles, requirement of at least 3 tracks in the vertex.

Carbon

Fragments' multiplicity distribution: DATA vs MC reco

Distributions normalized to beam particles, requirement of at least 3 tracks in the vertex.

Carbon

Fragments' angular distribution: MC RECO vs MC

Distributions normalized to beam particles, requirement of at least 3 tracks in the vertex.

Carbon

Fragment's angular distribution: DATA vs MC RECO

Distributions normalized to beam particles, requirement of at least 3 tracks in the vertex.

Carbon

Mean Oxygen Kinetic Energy per layer distribution (MC)

Cross Section Measurement

Integrated cross section:

$$\sigma(E_{kin \ O})\Big|_{C \ or \ C_2H_4} = \frac{Y_i(E_{kin})}{N_B N_{TG} \epsilon^i_{reco}(E_{kin})}$$
$$\sigma(E_{kin \ O})\Big|_{H} = \frac{1}{4} \left(\sigma(E_{kin \ O})\Big|_{C_2H_4} - 2\sigma(E_{kin \ O})\Big|_{C} \right)$$

• $Y_i = \#$ of fragments in the interval $\Delta E_{kin \ Oxy}$ • $N_B = \#$ of ions colliding on the target • $N_{TG} = \#$ of particles in the target: $\frac{\rho dN_A}{\Lambda}$, with: • ρ = target density: $\rho_{C} = 2.26 g/cm^{3}$ $\rho_{C_2H_4} = 0.94g/cm^3$ $\rho_{H} = 0.0708 g/cm^{3}$ • d =target thickness: $d_C = 0.1 cm$ per layer $d_{C_2H_4} = 0.2cm$ per layer • $N_A = 6.022 \cdot 10^{23} / mol$ $\bullet A = molar mass:$ $A_C = 12g/mol$ $A_{C2H4} = 28g/mol$ $A_H = 1g/mol$ • ϵ_{reco}^{i} = reconstruction efficiency 22

Integrate cross section

Projectile atomic number	Projectile mass number	Target atomic number	Target mass number	Target chemical formula	Projectile kinetic energy (MeV/u)	Cross-section + type	Cross-section (mb)	Cross-section	Cross-section upper error (mb)	First author of the publication	Year of publicatio
8	16	6	12	С	288	сс	852	17	17	Yamaguchi	2011
8	16	6	12	С	290	СС	863	20	20	Zeitlin	2011
8	16	6	12	С	400	сс	842	22	22	Zeitlin	2011

Integrate cross section

https://crosssection-db.herokuapp.com/

Integrate cross section

Cross Section Measurement

Starting from kinematic distributions it's possible to evaluate the differential cross section:

$$\frac{d\sigma(\theta)}{d\theta}\Big|_{C \text{ or } C_2H_4} = \frac{Y_i(\theta)}{N_B N_{TG} \Delta \theta \epsilon_{reco}^i(\theta)}$$
$$\frac{d\sigma(\theta)}{d\theta}\Big|_{H} = \frac{1}{4} \left(\frac{d\sigma(\theta)}{d\theta} \Big|_{C_2H_4} - 2\frac{d\sigma(\theta)}{d\theta} \Big|_{C} \right)$$

•
$$Y_i = \#$$
 of fragments in the interval $\Delta \theta$
• $N_B = \#$ of ions colliding on the target
• $N_{TG} = \#$ of particles in the target: $\frac{\rho dN_A}{A}$, with:
• $\rho = \text{target density:}$
 $\rho_C = 2.26g/cm^3$
 $\rho_{C_2H_4} = 0.94g/cm^3$
 $\rho_H = 0.0708g/cm^3$
• $d = \text{target thickness:}$
 $d_C = 0.1cm \text{ per layer}$
 $d_{C_2H_4} = 0.2cm \text{ per layer}$
• $N_A = 6.022 \cdot 10^{23}/mol$
• $A = \text{molar mass:}$
 $A_C = 12g/mol$
 $A_{C2H_4} = 28g/mol$
 $A_H = 1g/mol$
• $\Delta \theta = \theta$ bin
• $\epsilon_{reco}^i = \text{reconstruction efficiency}$

Differential cross section for angle (Mean Energy)

Differential cross section for angle (Mean Energy)

Charge distribution: MC RECO vs MC

- Ionization and refreshing not simulated in MC: true charge used
- Efficiency of merging S1 and S2 to improve

Charge distribution: DATA vs MC RECO

Distributions normalized to beam particles

For charge evaluation see:

- https://doi.org/10.1515/phys-2021-0032
- V. Boccia's talk at Physics Meeting:

https://agenda.infn.it/event/29377/contributions/149216/attachments/90378/121729/ Update ChargeID GSI3 04 05 2022.pdf

Analysis of Oxygen at 400 MeV/n on C GSI 3

GSI3 - Emulsions Quality Check S1

s.eY:s.eX

s.eY:s.eX

- Bad emulsions quality
- S1 were made by Slavich company, S2 and following by Nagoya emulsions
- GSI3 and GSI4 batch different from GSI1' and GSI2' one

GSI3 - Emulsions Quality Check S2

• No problems in S2 (emulsions produced in Nagoya)

Local alignment and shrinkage corrections

• Trials on-going to recover tracks and vertices reconstructions

• Trying to local align (corrections for each cm²)

GSI3 Vertex Plate distribution

Distributions normalized to beam particles

Still many fake or multiplied vertices

GSI3 Fragments' angular distribution

Distributions normalized to beam particles, requirement of at least 3 tracks in the vertex.

Conclusions

Oxygen @ 200 MeV/n on C and C2H4

- Integrated cross section evaluated
- Differential cross section evaluation on-going

Oxygen @ 400 MeV/n on C

• Bad emulsions quality: efforts on-going to recover data reconstruction

BACK UP SLIDES

Detector Structure

GSI1 - S1

GSI1 - S2

npl {abs(t.eTX)<0.05&&abs(t.eTY)<0.05}

GSI2 - S1

GSI2 - S2

s.eTX:s.eScanID.ePlate {abs(s.eTX)<0.05&&abs(s.eTY)<0.05}

s.eTY:s.eScanID.ePlate {abs(s.eTX)<0.05&&abs(s.eTY)<0.05}

GSI3 - S1

s.eTX:s.eScanID.ePlate {abs(s.eTX)<0.05&&abs(s.eTY)<0.05}

s.eTY:s.eScanID.ePlate {abs(s.eTX)<0.05&&abs(s.eTY)<0.05}

s.eTX:s.eScanID.ePlate

s.eTY:s.eScanID.ePlate

npl {abs(t.eTX)<0.05&&abs(t.eTY)<0.05}

GSI3 - S2

s.eTX:s.eScanID.ePlate {abs(s.eTX)<0.05&&abs(s.eTY)<0.05}

s.eTY:s.eScanID.ePlate {abs(s.eTX)<0.05&&abs(s.eTY)<0.05}

