Relative Phase Measurement in the pp̄ Final State

Marco Destefanis

Università degli Studi di Torino

1

BESIII – Italia Frascati, Italia April 7, 2022

J/ψ Strong and Electromagnetic Decay Amplitudes

[1] S.J. Brodsky, G.P. Lepage, S.F. Tuan, Phys. Rev. Lett. 59, 621 (1987).

J/ψ Strong and Electromagnetic Decay Amplitudes

- If both real, continuum and resonant amplitudes must interfere ($\Phi_p \sim 0^{\circ}/180^{\circ}$)
- On the contrary $\Phi_{\rm p} \sim 90^{\circ} \rightarrow No$ interference

$$\begin{split} J/\psi &\to N\overline{N} \; (^{1/2^{+1}/2^{-}}) \; \Phi_p = 89^\circ \pm 15^\circ \, ^{[1]}; \; 89^\circ \pm 9^{\circ [2]} \\ J/\psi &\to \; VP \; (1^{-}0^{-}) \; \Phi_p = 106^\circ \pm 10^\circ \, ^{[3]} \\ J/\psi &\to \; PP \; (0^{-}0^{-}) \; \Phi_p = 89.6^\circ \pm 9.9^\circ \, ^{[4]} \\ J/\psi &\to \; VV \; (1^{-}1^{-}) \; \Phi_p = 138^\circ \pm 37^\circ \, ^{[4]} \end{split}$$

- Results are model dependent
- Model independent test:

energy scan below and at resonance

[1] R. Baldini, C. Bini, E. Luppi, Phys. Lett. B404, 362 (1997); R. Baldini et al., Phys. Lett. B444, 111 (1998)
[2] M. Ablikim et al., Phys. Rev. D 86, 032014 (2012).
[3] L. Kopke and N. Wermes, Phys. Rep. 174, 67 (1989); J. Jousset et al., Phys. Rev. D41,1389 (1990).3
[4] M. Suzuki et al., Phys. Rev. D60, 051501 (1999).

J/ψ Strong and Electromagnetic Decay Amplitudes $J/\psi \to N\overline{N}$

Favoured channel

3g match 3qq pairs

Without EM contribution p = n, due to isospin

EM contribution amplitudes should have opposite sign, like magnetic moments

 $BR_{n\bar{n}}$ expected ~ $\frac{1}{2}$ $BR_{p\bar{p}}$

$$R = \frac{Br(J/\psi \to n\overline{n})}{Br(J/\psi \to p\overline{p})} = \left| \frac{A_{3g} + A_{\gamma}^{n}}{A_{3g} + A_{\gamma}^{p}} \right|^{2} \qquad \begin{array}{c} A_{3g}, A_{\gamma} \in \Re & \mathsf{R} < 1\\ A_{3g} \perp A_{\gamma} & \mathsf{R} \approx 1 \end{array}$$

But the BR are almost equal according to BESIII^[1]:

BR(J/ $\psi \rightarrow p\bar{p}$) = (2.112 ± 0.004 ± 0.027)·10⁻³

 $BR(J/\psi \to n\bar{n}) = (2.07 \pm 0.01 \pm 0.14) \cdot 10^{-3}$

Suggests 90° phase

[1] M. Ablikim et al., "Study of $J/\psi \rightarrow ppbar$ and $J/\psi \rightarrow nnbar$ ", Phys. Rev. D86 032014 (2012).

J/ψ Phase – Real Data

E _{cm} (MeV)	L (pb ⁻¹)		E _{cm} (MeV	/) £ (pb ⁻¹)
3050.0	14.919±0.029	2012	3095.8	2.135±0.011
3060.0	15.060±0.029	2012	3096.9	2.069±0.011
3083.0	4 769+0 017	-	3098.2	2.203±0.012
5005.0	4.705±0.017	_	3099.0	0.756±0.007
3085.6	17.507±0.032		3101.5	1.612±0.010
3090.0	15.558±0.030		3105.5	2.106±0.011
3093.0	14.910±0.030	2015	3112.0	1.720±0.009
3094.3	2.143±0.011	3120.0		1.264±0.009
3095.2	1.816±0.010	3000.0 1		15.849±0.010
		30	20.0	17.315±0.011

3080.0

B.X. Zhang, Luminosity measurement for J/psi phase and lineshape study.

126.21±0.029

Online Beam Energy Measurement

E _{cm} [MeV]	E _{meas} [MeV]			E _{cm}	[MeV]		E _{meas} [Me\	/]
3050.0	3049.65±0.03	3		30	095.8		3095.83±0.	08
3060.0	3058.70±0.03	3	E shift	30	096.9		3097.22±0.	08
3083.0	3082.50±0.04	1	included	30	098.2		3098.34±0.	08
3085.6	3079.63±0.02	2		30	099.0		3099.04±0.	09
3090.0	3088.86±0.02			3′	101.5		3101.36±0.	11
3093.0	3091.76±0.02	2		3′	105.5		3105.58±0.	09
3094.3	3094.70±0.08	3		3'	112.0		3112.05±0.0	09
3095.2	3095.43±0.08	3		3	120.0		3119.88±0.	12
	3000.0	30	00.0±0.2	3080.0)	308	30.0±0.2	
NO REMO	3020.0	30	20.0±0.2					

ppbar Events Reconstruction

BOSS versions 6.6.4.p01 and 6.6.5.p01

- 2 good charged tracks:
- |Rxy| < 1 cm, |Rz| < 10 cm;
- back-to-back tracks: 178° < θ < 180°;
- p < 2 GeV/c;
- |cos| < 0.8

Analysis in **Barrel**;

- E shower/ p < 0.5 for protons;
- PID dE/dx + TOF and P(p/pbar) > 0.001
- Events via p-pbar momentum fit and sidebands

M. Ablikim et al., Phys. Rev. D 86, 032014 (2012).

Number of ppbar Events

- 2-dimensional fit of p and pbar momenta
- Separate the different contributions

ppbar Rates Fit

	E _{cm} [MeV]	Rate [pb]	
	3050.0	4.99±0.58	
	3060.0	4.32±0.54	
	3083.0	4.23±0.94	
	3085.6	4.62±0.51	
	3090.0	6.91±0.67	
	3093.0	11.74±0.89	
	3094.3	224.52±10.30	
	3095.2	1106.2±25.42	
Sy	stematics	3000.0	5.01
no	t included	3020.0	4.77

3020.0

R = Nev/(Int_Lum)

	E _{cm} [MeV]	Rate [pb]
	3095.8	2645.2±37.75
	3096.9	4707.1±53.86
	3098.2	2151.6±33.05
	3099.0	919.48±35.90
	3101.5	225.77±11.92
	3105.5	126.05±7.76
	3112.0	68.04±6.30
	3120.0	55.24±6.62
5.01±0.56	3080.0	4.53±0.19
4.77±0.53		

ppbar Rates Sidebands

	Ecm [MeV]		Rate [pb]	
	3050.0		4.83±0.57	
	3060.0		4.33±0.54	(mi
	3083.0	4.04±0.92		
	3085.6		4.80±0.52	/(In
	3090.0		7.21±0.68	Nev
	3093.0	11.77±0.89		
	3094.3	224.10±10.29		
	3095.2	10	97.60±25.32	
Sy	vstematics	<u> </u>	3000.0	4.92±0.

3020.0

not included

Nev = S - 1/2B + 1/4A

	Ecm [Me	V]	Rate [pb]		
	3095.8	26	37.94±37.69		
(un	3096.9	3096.9 4695.7			
	3098.2	21	50.48±33.04		
//(Ir	3099.0 918.32		8.32±35.87		
Nev	3101.5	22	225.03±11.90		
и 2	3105.5	1	26.31±7.77		
	3112.0	6	9.04±6.35		
	3120.0	5	55.18±6.62		
4.92±0.56	3080.0	080.0 4.44±0.			
4.91±0.53			10		

Background Upper limits

	Energy $[MeV]$	$\pi^+\pi^-$	K+K-	$p \bar{p} \pi^{0}$	$p \bar{p} \gamma$	$\Lambda ar{\Lambda}$
	3000.0	$4 \cdot 10^{-3}$	$1.2 \cdot 10^{-2}$	$4.7 \cdot 10^{-3}$	$1.2 \cdot 10^{-3}$	$4.5 \cdot 10^{-4}$
e⁺e⁻	3020.0	$4 \cdot 10^{-3}$	$1.4 \cdot 10^{-2}$	$4.8 \cdot 10^{-3}$	$1.4 \cdot 10^{-3}$	$1.9 \cdot 10^{-4}$
	3050.0	$4 \cdot 10^{-3}$	$1.2 \cdot 10^{-2}$	$3.7 \cdot 10^{-3}$	$0.5 \cdot 10^{-3}$	$1.5 \cdot 10^{-4}$
µ⁺µ⁻	3060.0	$4 \cdot 10^{-3}$	$1.2 \cdot 10^{-2}$	$3.7 \cdot 10^{-3}$	$1.2 \cdot 10^{-3}$	$1.5 \cdot 10^{-4}$
	3085.6	$4 \cdot 10^{-3}$	$1.4 \cdot 10^{-2}$	$4.0 \cdot 10^{-3}$	$1.6 \cdot 10^{-3}$	$3.8 \cdot 10^{-4}$
ΥY	3080.0	3.10^{-2}	$9.4 \cdot 10^{-2}$	$2.7 \cdot 10^{-2}$	$7.5 \cdot 10^{-3}$	$2.6 \cdot 10^{-3}$
artar-	3083.0	$1 \cdot 10^{-3}$	$4 \cdot 10^{-3}$	$1.1 \cdot 10^{-3}$	$0.2 \cdot 10^{-3}$	$1.0 \cdot 10^{-4}$
	3090.0	$4 \cdot 10^{-3}$	$1.2 \cdot 10^{-2}$	$3.4 \cdot 10^{-3}$	$1.1 \cdot 10^{-3}$	$3.3 \cdot 10^{-4}$
K+K-	3093.0	$4 \cdot 10^{-3}$	$1.2 \cdot 10^{-2}$	$3.3 \cdot 10^{-3}$	$0.8 \cdot 10^{-3}$	$3.1 \cdot 10^{-4}$
	3094.3	$2 \cdot 10^{-3}$	3.10^{-3}	$4.8 \cdot 10^{-4}$	$1.4 \cdot 10^{-4}$	$0.5 \cdot 10^{-4}$
ppbar π^0	3095.2	$6 \cdot 10^{-3}$	7.10^{-3}	$4.4 \cdot 10^{-4}$	$1.4 \cdot 10^{-4}$	$0.6 \cdot 10^{-4}$
	3095.8	$1 \cdot 10^{-2}$	$1.3 \cdot 10^{-2}$	$5.6 \cdot 10^{-4}$	$1.6 \cdot 10^{-4}$	$1.0 \cdot 10^{-4}$
ppbar y	3096.9	$2 \cdot 10^{-2}$	$2.3 \cdot 10^{-2}$	$6.1 \cdot 10^{-4}$	$1.8 \cdot 10^{-4}$	$0.6 \cdot 10^{-4}$
• •	3098.2	$8 \cdot 10^{-3}$	9.10^{-3}	$5.3 \cdot 10^{-4}$	$2.3 \cdot 10^{-4}$	$0.3 \cdot 10^{-4}$
ΛΛbar	3099.0	$1 \cdot 10^{-3}$	$1 \cdot 10^{-3}$	$1.7 \cdot 10^{-4}$	$0.9 \cdot 10^{-4}$	$0.2 \cdot 10^{-4}$
105	3101.5	$4 \cdot 10^{-4}$	$1 \cdot 10^{-3}$	$3.4 \cdot 10^{-4}$	$2.2 \cdot 10^{-4}$	$0.3 \cdot 10^{-4}$
10 ⁵ events	3105.5	$2 \cdot 10^{-4}$	$2 \cdot 10^{-3}$	$4.4 \cdot 10^{-4}$	$1.8 \cdot 10^{-4}$	$0.4 \cdot 10^{-4}$
	3112.0	9.10^{-5}	$1 \cdot 10^{-3}$	$3.5 \cdot 10^{-4}$	$1.2 \cdot 10^{-4}$	$0.1 \cdot 10^{-4}$
	3120.0	5.10^{-5}	$1 \cdot 10^{-3}$	$2.5 \cdot 10^{-4}$	$0.6 \cdot 10^{-4}$	$0.2 \cdot 10^{-4}$

Fitting Routine

- Unfolding beam energy spread not possible -> consider event rates only, all corrections into predictions
- ISR generation and BOSS too slow for fitting
- Goal: separate ISR, BOSS, event selection and fitting routine
- Take into account:
 - energy error for each event
 - beam energy spread
 - ISR

- ead in t
 - in the generator
- Now considered in generation and simulation
- Lists produced:
 - n. of events before and after the experimental cuts
 - generated and passed events for each energy value

Fitting Routine (Babayaga)

- Babayaga new output by Carlo Calame version produced explicitly for the phase measurement
- Full phase space generation
- No dependence on minimum energy
- No need to return to simulations
- The Rate of each event has to be reweighted
- Reweight each event after normalization to n. of events
- Efficiency inserted in the prediction
- Fit of the Rate

Fitting Routine

Cross section calculation for each energy value

- $A_{S}e^{i\phi}$ + A_{EM} - A_{C}

- Weighted mean of the events (contains efficiency)
- Fit parameters: φ , BR, σ_{cont} at 3 GeV (varying like W⁻¹⁰)
- Minimization of χ^2 by MonteCarlo
- Errors on parameters:
 - Re-estraction of the experimental values (as done in the measurement preparation)
- More reliable with a larger number of iterations
- Use MINUIT routines

Fit Results

Fit Results

Systematic Uncertainties (Rates)

- E shower/ p < 0.5 for protons;
- p-pbar opening angle
- PID
- Tracking (1%)
- Luminosity (~1%)
- Integral limits

Cut	Value	Variation
E_{show}/p	$0.5 \mathrm{c}$	± 0.05 c (about 2σ)
$\vartheta_{p\bar{p}}$	$178^{\circ} < < 180^{\circ}$	$\pm 0.5^{\circ} \text{ (about } 2\sigma)$
fit	$-3\sigma < < 3\sigma$	$\pm 0.1\sigma$
PID	0.001	± 0.0005

Systematic Uncertainties (Rates)

Nominal	E_{show}/p	$\vartheta_{n\bar{n}}$	fit	PID	Track	Lum.	σ_{evet} [pb]
Energy [MeV]	-snow/ F	- pp					- <i>syst</i> [1]
3050.0	0.33	0.29	0.33	0.41	0.10	0.05	0.70
3060.0	0.29	0.31	0.31	0.38	0.09	0.04	0.65
3083.0	0.54	0.53	0.54	0.67	0.08	0.05	1.15
3085.6	0.30	0.30	0.30	0.36	0.09	0.05	0.64
3090.0	0.38	0.38	0.38	0.47	0.14	0.07	0.83
3093.0	0.51	0.51	0.51	0.63	0.23	0.12	1.12
3094.3	5.93	5.94	5.94	7.28	4.49	2.41	13.59
3095.2	14.65	14.68	14.66	17.98	22.12	11.57	39.89
3095.8	21.75	21.79	21.77	26.69	52.90	28.50	75.79
3096.9	31.04	31.10	31.06	38.09	94.14	54.60	127.24
3098.2	19.06	19.08	19.06	23.37	43.03	22.46	63.19
3099.0	20.68	20.73	20.70	25.38	18.39	9.73	48.62
3101.5	6.85	6.88	6.87	8.43	4.52	2.52	15.47
3105.5	4.48	4.48	4.48	5.49	2.52	1.32	9.92
3112.0	3.62	3.64	3.64	4.46	1.36	0.75	7.86
3120.0	3.82	3.80	3.82	4.68	1.10	0.57	8.19
3000.0	0.32	0.33	0.32	0.40	0.10	0.03	0.70
3020.0	0.30	0.31	0.30	0.37	0.10	0.03	0.65 18
3080.0	0.11	0.11	0.11	0.13	0.09	0.03	0.25

Systematic Uncertainties (Phase)

- E shower/ p < 0.5 for protons;
- p-pbar opening angle
- PID
- Tracking (1%)
- Luminosity (~1%)
- Integral limits
- Reconstruction efficiency (1% variation)

Systematic Uncertainties (Phase)

Positive phase $\varphi = 95.1^{\circ} \pm 2.8^{\circ} \pm 4.6^{\circ}$ $\sigma_{cont} = 9.91 \pm 0.40 \pm 0.78 \text{ pb}$ $B_{out} = (1.92 \pm 0.02 \pm 0.04) 10^{-3}$

Parameters Cuts [MeV]	φ [°]	BR $[10^{-3}]$	σ_{3GeV} [pb]
E_{show}/p	2.0	0.018	0.35
$\vartheta_{p \overline{p}}$	1.2	0.015	0.24
fit	1.3	0.015	0.35
PID	3.0	0.024	0.48
efficiency	1.7	0.016	0.27
Total	4.6	0.040	0.78

Negative phase

 $\varphi = -95.0^{\circ} \pm 3.9^{\circ} \pm 4.6^{\circ}$ $\sigma_{cont} = 9.91 \pm 0.63 \pm 0.83 \text{ pb}$ $B_{out} = (2.10 \pm 0.03 \pm 0.04) 10^{-3}$

Parameters Cuts [MeV]	φ [°]	BR $[10^{-3}]$	σ_{3GeV} [pb]
E_{show}/p	1.7	0.010	0.31
$\vartheta_{par{p}}$	0.8	0.018	0.25
fit	2.3	0.017	0.39
PID	2.8	0.025	0.48
efficiency	2.3	0.017	0.38
Total	4.6	0.040	0.83

PDG: $B_{out} = (2.121 \pm 0.029) 10^{-3}$

Summary

- \cdot Study of the ppbar final state around J/ψ
- Fitting routine based on Babayaga (fast)
- Systematic errors calculation
- Full check of the procedure
- Updated memo version already uploaded (BAM-00106)