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Motivation and methods

• APV/SRS provides 27 digitized samples of the
amplified APV output signal with a time bin of 25ns.
From this information it is possible to apply a
deconvolution and thus extract the induced GEM
signals with a good approximation.

• Use test-beam data, taken with APV/SRS system and
planar GEMs, to extract some more detailed
information about the GEM signals (duration, shape,
amplitude) with a CGEM-IT-like configuration (5mm
drift gap, Ar-ISO gas mixture)

• Use these signals to study the response of TIGER
electronics and look for some possible optimization
of TIGER configuration parameters (integ_time) or
hints for data analysis 2CERN – NA H4 beam line, July 2021 



Dataset selection

• RUN 
 5272 (HV = 825 V, angle = 0°)
 5275 (HV = 835 V, angle = 45° on X-view strips)
 5271, 5273, 5265, 5267 also available but not shown in this talk

• Selections
 Select higher charge cluster for each view
 No more than one cluster with 1000 ADC cluster charge
 At least 1 cluster for each view and planar
 Cut events if cluster on planar 3 view-X has strips in range 0-32
 Cut events if cluster has strips in range 0-1
 Cut events if cluster has strips in range 126-127

 31k events after these selections for RUN 5272 (100k triggers)
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Reference plots (RUN 5272)
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Reference plots (RUN 5272)
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Reference plots (RUN 5272)
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Reference plots (RUN 5272)
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APV model
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10.5170/CERN-1999-009.162

(1 mip = 25k electrons)

Transfer function: CR-RC shaper with 
50 ns peaking time

http://dx.doi.org/10.5170/CERN-1999-009.162


Signal deconvolution
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• Clean noisy points before and after the 
signal (not always possible)

• Interpolate 25ns points to increase 
granularity of the curve to be 
deconvolved and apply filter to reduce 
large fast oscillations



Signal deconvolution
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• Deconvolve using APV transfer function 

x(t) = APV input (GEM signal)

y(t) = APV output (ADC codes)

H(s) = APV transfer function

• Re-convolve to check goodness of 
procedure

APV output

input current 



Signal deconvolution
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• From deconvoluted input extract signal 
duration and charge

• Signal duration taken as 5%-95% 
integrated charge time interval



Single signal analysis
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Look at one event
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Look at one cluster (strip 29-33)
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Look at one cluster (strip 29-33)
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Look at one cluster (strip 29-33)
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• Strips with high charge seem to have 
longer duration signals

• Strips in the tails of cluster (low charge) 
seem to have shorter duration signals
o These strips don’t see the full 5mm 

drift gap signal?
o Capacitive effects?

• Let’s apply some of these signals to 
TIGER



APV (1)

Input signal

• long duration: 140-150 ns

• charge: 44 fC

APV output signal

• peaking time of 124 ns vs 50 ns 
expected from delta input current
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TIGER (1)

• Peak voltage = 483 mV

• Q = 40 fC (3-4 fC of ballistic deficit)

• MAX at integ_time = 8

• Sampled voltage @integ_time = 6
 413 mV  Q = 34 fC
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APV (2)

Input signal

• long duration: 180-190 ns

• charge: 25 fC

APV output signal

• peaking time of 200 ns vs 50 ns 
expected from delta input current
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TIGER (2)

• Peak voltage = 255 mV

• Q = 21 fC (4 fC of ballistic deficit)

• MAX at integ_time = 10

• Sampled voltage @integ_time = 6
 169 mV  Q = 14 fC
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APV (3)

Input signal

• short duration: 70 ns

• charge: 32 fC

APV output signal

• peaking time of 80 ns vs 50 ns 
expected from delta input current
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TIGER (3)

• MAX at integ_time = 6

• Peak sampled voltage = 375 mV

• Q = 31 fC (<1 fC of ballistic deficit)

• Sampled voltage @integ_time = 6 is OK

• Sampled voltage @integ_time = 9 is 
304 mV  Q = 25 fC (20% of signal is 
lost)
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Full RUN analysis
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Deconvoluted signal width (RUN 5272)

• vd = 38 um/ns

• Induction gap = 2 mm
• Drift gap = 5 mm

• Induction time = 53 ns
• Drift time = 132 ns

• Total time = 185 ns (MAX)
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Deconvoluted signal width vs angle

For RUN 5275 the cluster size of X-view is much higher, thus also its number of entries w.r.t. Y-view
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Deconvoluted signals 
width vs charge

• TOP: charge from APV peak

• BOTTOM: charge from deconvoluted signal

• In both cases the low signal width peak is
mainly due to the low charge signals (tails
of cluster which don’t see the full 5mm
drift gap?)

• Small dependence of signal width on signal
charge (except when saturated)
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integ_time scan (all)



integ_time scan

36

TOP: first 1000 events

BOTTOM: all events, best fit

Peak error = 𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑉𝑉𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠

𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
� 100

• Vpeak = E_branch peak voltage
• Vsampled = S&H output

 This takes into account only the peak 
error (which can be “optimized”), not 
the ballistic deficit (which is fixed)



Conclusions

• The input signals duration plays an important role in the charge measurement
(ballistic deficit + integ_time)

• Signals can be up to 180-200 ns and this implies that the shaped output signal
peaking time is largely dependent on the input signals width

• Setting integ_time = 7-8 should be slightly better for these kind of signals (test
beam, 0° angle), but the optimum is not the same for all the signals

• Cluster tails seem to behave differently
• Angled tracks have shorter duration signals and thus would require a lower integ_time

• This analysis provides a tool to study the characteristics of GEM signals (from real
data) and the response of TIGER

• Repeat the analysis on runs taken with different configurations (cosmic, gas mixture, 3 mm
gap, CGEM geometry, magnetic field ON) and compare with GEM simulations 37



Backup slides
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Look at one event
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Look at one event

40



Look at one event
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TIGER (2)

• Divide time by 2: 70 ns

• Peak voltage = 517 mV

• Q = 43 fC (almost no ballistic deficit)

• MAX at integ_time = 6

• Sampled voltage = 516 mV

• Q = 43 fC (peak sampled correctly)
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TIGER (3)

• Divide time by 3: 47 ns

• Peak voltage = 521 mV

• Q = 43.5 fC (no ballistic deficit)

• MAX at integ_time = 6

• Sampled voltage = 519 mV

• Q = 43.25 fC
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TIGER (4)

• Divide time by 4: 35 ns

• Peak voltage = 522 mV

• Q = 43.5 fC (no ballistic deficit)

• MAX at integ_time = 5

• Sampled voltage = 520 mV

• Q = 43.3 fC
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TIGER (2)

• Divide time by 2: 93 ns

• Peak voltage = 290 mV

• Q = 24 fC (almost no ballistic deficit)

• MAX at integ_time = 7
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TIGER (3)

• Divide time by 3: 62 ns

• Peak voltage = 297 mV

• Q = 25 fC (no ballistic deficit)

• MAX at integ_time = 6
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TIGER (4)

• Divide time by 4: 46 ns

• Peak voltage = 299 mV

• Q = 25 fC (no ballistic deficit)

• MAX at integ_time = 5
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integ_time scan (short)
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integ_time scan (medium)
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integ_time scan (long)
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