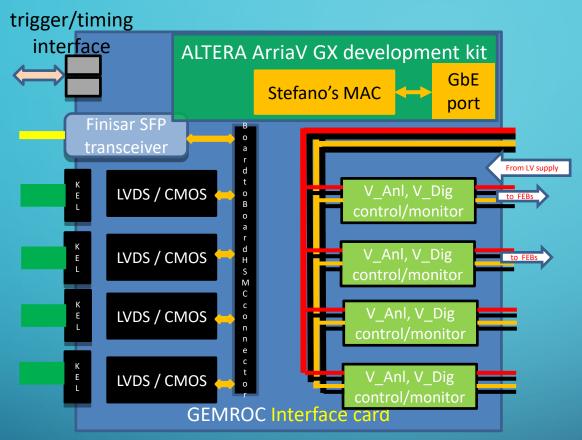

Quest for a replacement of the Intel/ALTERA ArriaVGX dev. kit

GEMROC: Off-detector readout card for BES-III CGEM-IT detector


GEMROC = GEMROC_InterFace Card (A.C.R.) + ArriaV GX development kit

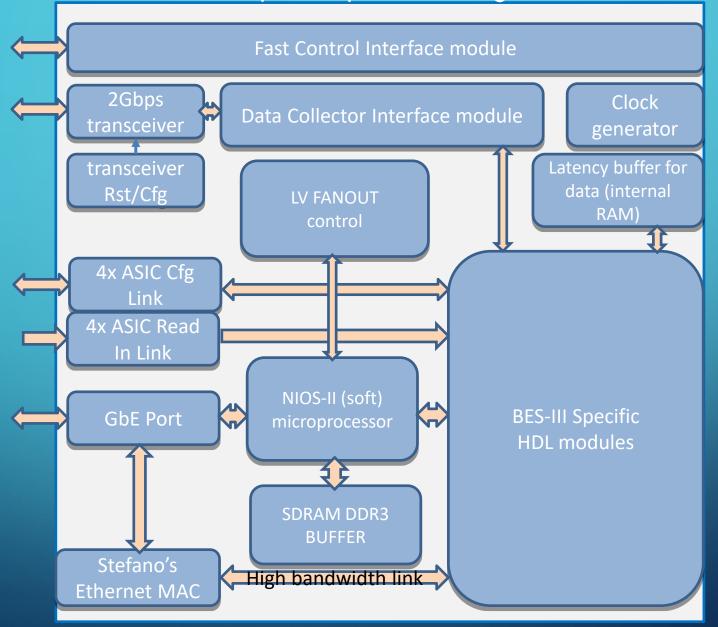
(DK-START-5AGXB3N) (development kit production discontinued in 2020)

GEMROC_InterFace Card block diagram

The GEMROC module LV fanout section has 2 power input:

- VCC Anl
- VCC_Dig

driven by the DETECTOR LV power supply mainframe, one channel of which supplies two GEMROC modules.


The GbE port of the FPGA module is used to receive commands to turn ON, turn OFF and read current for each of the 4 output power ports.

Power for the GEMROC itself comes from the independent "VCC_GEMROC" input

Through the MAC unit designed by **Stefano Chiozzi**, **INFN-FE**, the Ethernet port of the GEMROC module supports:

- static IP (example: 192.168.1.aaa, with aaa determined by Board ID)
- UDP communication for LV FANOUT control by SLOW control system
- UDP communication for TIGER configuration by DAQ/RUN control system (PROPOSAL)
- UDP communication for diagnostic TIGER data readout (as for DAC scan tasks)

GEMROC FPGA: firmware (A.C.R.) block diagram

ARRIA V GX DEV. KIT: ALTERA PART NUMBER DK-START-5AGXB3N

FPGA device: 5AGXFB3H4F35C4N Technology: TSMC's 28nm; Year launched 2011

Figure 1: Sample Ordering Code and Available Options for Arria V GX Devices

Cost: EUR 791,93 (nov 2019)

PDN: Dec 2020 but ran out of distributor's stock months before

FIND A REPLACEMENT !! (with, possibly, the same footprint)

Embedded Hard IPS —————— B: No hard PCIe or hard memory controller M: 1 hard PCIe and 2 hard memory controllers F: 2 hard PCIe and 4 hard memory controllers	Transceiver Count D: 9 G: 18 H: 24 K: 36	F: FineLine BGA (FBGA) C: Commercial (T _J = -0° C to 85° C) I: Industrial (T _J = -40° C to 100° C)
Family Signature 5A GX I 5A: Arria V	F B5 H 4	F 35 I 3 N
Family Variant		Package Code 27 : 672 pins 31 : 896 pins G : RoHS5
A1: 75K logic elements A3: 156K logic elements A5: 190K logic elements A7: 242K logic elements B1: 300K logic elements B3: 362K logic elements B5: 420K logic elements B5: 420K logic elements B7: 504K logic elements	Transceiver	G: RoHS6 35: 1,152 pins 40: 1,517 pins G: RoHS6 P: Leaded (1) -FPGA Fabric Speed Grade 3 (fastest) 4 5 6
Note: 1. Contact Intel for availability.		Ü
Maximum Resources		

Table 4: Maximum Resource Counts for Arria V GX Devices

Poso	Resource				Me	mber Code)		
neso	urce	A1	A3	A5	A7	B1	B3	B5	В7
Logic Elements (LE) (K)		75	156	190	242	300	362	420	504
ALM		28,302	58,900	71,698	91,680	113,208	136,880	158,491	190,240
Registe	er	113,208	235,600	286,792	366,720	452,832	547,520	633,964	760,960
Mem	M10K	8,000	10,510	11,800	13,660	15,100	17,260	20,540	24,140
ory (Kb)	MLAB	463	961	1,173	1,448	1,852	2,098	2,532	2,906
	Variable- precision DSP		396	600	800	920	1,045	1,092	1,156

Pose	ource		Member Code											
nest	Juice	A1	A3	A5	A7	B1	B3	B5	В7					
	18 x 18 Multiplier		792	1,200	1,600	1,840	2,090	2,184	2,312					
PLL	PLL		10	12	12	12	12	16	16					
6 Gbp Transc		9	9	24	24	24	24	36	36					
GPIO((3)	416	416	544	544	704	704	704	704					
LVD S	Transmit ter	67	67	120	120	160	160	160	160					
3	Receiver	80	80	136	136	176	176	176	176					
PCIe I Block	Hard IP	1	1	2	2	2	2	2	2					
Hard I Contro	Memory oller	2	2	4	4	4	4	4	4					

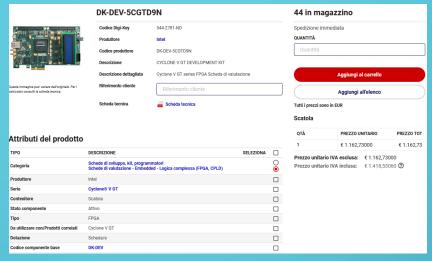
Related Information

High-Speed Differential I/O Interfaces and DPA in Arria V Devices chapter, Arria V Device Handbook

Provides the number of LVDS channels in each device package.

Package Plan

Table 5: Package Plan for Arria V GX Devices


Member Code	F672 (27 mm)		F896 (31 mm)		F11 (35)	152 mm)	F1517 (40 mm)		
	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR	GPIO	XCVR	
A1	336	9	416	9	_	_	_	_	
A3	336	9	416	9	_	_	_	_	
A5	336	9	384	18	544	24	_	_	
A7	336	9	384	18	544	24	_	_	
B1	_	_	384	18	544	24	704	24	
В3	_	_	384	18	544	24	704	24	
B5	_	_	_	_	544	24	704	36	
B7	_	_	_	_	544	24	704	36	

CANDIDATES FOR THE REPLACEMENT OF THE ARRIA V GX DEV. KIT (NOT SAME FOOTPRINT UNFORTUNATELY)

- 1) Cyclone V GT dev. kit Intel DK-DEV-5CGTD9N:
 - onboard FPGA: 5CGTFD9E5F35C7N; year launched: 2011; TSMC's 28nm technology
 - Status: active; cost: 1.162,73€ (current, Digikey)
 - porting of GEMROC FPGA firmware (A.C.R.): fits with timing closure warnings
- 2) Cyclone V SX SoC dev. kit Critical Link MitySOM-5CSX:
 - onboard FPGA: 5CSXFC6C6U23C7N (SoC); year launched: 2012
 - Status: active; cost: 804,69€ (current, Digikey)
 - porting of GEMROC FPGA firmware (A.C.R.): unsuccessful due to insufficient I/O
- Cyclone V SX SoC dev. kit Intel DK-DEV-5CSXC6N:
 - onboard FPGA: 5CSXFC6D6F31C6N (SoC); year launched: 2011
 - Status: active; cost: 1.606,71€ (current, Digikey)
 - porting of GEMROC FPGA firmware (A.C.R.): fits with timing closure warnings for more pessimistic timing corners
- 4) Cyclone 10 GX dev. kit Trenz TEI0006-03-220-5I:
 - onboard FPGA: 10CX220YF780I5G; year launched: 2017; TSMC's 20nm technology
 - Status: active; cost: 498.00€ (current, Trenz)
 - accessory carrier board Trenz TEIB0006-02 cost: 179,00€ (current, Trenz)
 - porting of GEMROC FPGA firmware (A.C.R.): in progress needs Quartus Pro Edition
- 5) Cyclone 10 GX dev. kit Intel DK-DEV-10CX220-A:
 - onboard FPGA: 10CX220YF780E5G; year launched: 2017; TSMC's 20nm technology
 - Status: active; cost: 1.074,12€ (current, Digikey)
 - porting of GEMROC FPGA firmware (A.C.R.): in progress needs Quartus Pro Edition

1) Cyclone V GT dev. kit Intel DK-DEV-5CGTD9N

PRO of Cyclone V GT dev. kit:

- dev. kit status: active
- same outline as the Arria V GX dev. kit to be replaced
- current GEMROC firmware fits the onboard FPGA (with timing closure warning)

CONS of Cyclone V GT dev. kit:

- onboard FPGA is mature. Status reported on the Intel web site: Launched in 2011
- development kit has different number/position of I/O connectors <-> not same footprint as the Arria V GX dev. kit to be replaced
- can't be adapted to the GEMROC module without redesigning the enclosure
- cost

1) Cyclone V GT dev. kit Intel DK-DEV-5CGTD9N

FPGA device: 5CGTFD9E5F35C7N

Table 1-3. Maximum Resource Counts for Cyclone V GX and GT Devices—Preliminary

Resource		Cycl	one V GX De	evice		Cycl	one V GT	Device	
Resource	5CGXC3	5CGXC4	5CGXC5	5CGXC7	5CGXC9	5CGTD5	5CGTD	•	5CGTD9
ALM	11,698	18,868	28,868	56,415	113,585	28,868	56,415		113,585
LE	31,000	50,000	76,500	149,500	301,000	76,500	149,50)	301,000
Block Memory (Kb)	1,400	2,500	3,800	6,500	11,600	3,800	6,500	П	11,600
MLAB Memory (Kb)	147	295	440	836	1,717	440	836		1,717
Variable-precision DSP Block	42	70	124	156	342	124	156	П	342
18 x 19 Multiplier	84	140	248	312	684	248	312	П	684
Fractional PLL (1)	4	6	6	7	8	6	7	П	8
3-Gbps Transceiver	3	6	6	9	12	_	_	П	_
5-Gbps Transceiver	_	_	_	_	_	6	9	П	12
GPI0	224	368	368	480	560	368	480	П	560
LVDS	48	90	100	122	122	100	122		122
PCIe Hard IP Block	1	2	2	2	2	2	2		2
Hard Memory Controller	1	2	2	2	2	2	2		2
	•	•		•					

QUARTUS PRIME (STANDARD

VERSION) COMPILATION RESULTS:

Flow summary:

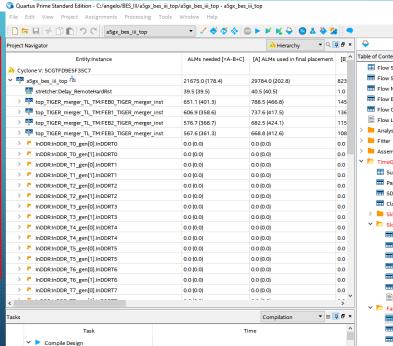
Timing closure report:

paths with failing
(probably recoverable)

timing closure in all

parameter corners

	0	_
	Flow Summary	
	< <filter>></filter>	
	Flow Status	Successful - Mon Jan 10 15:05:12 2022
	Quartus Prime Version	16.1.0 Build 196 10/24/2016 SJ Standard Editio
	Revision Name	a5gx_bes_iii_top
	Top-level Entity Name	a5gx_bes_iii_top
	Family	Cyclone V
	Device	5CGTFD9E5F35C7
	Timing Models	Final
	Logic utilization (in ALMs)	21,675 / 113,560 (19 %)
→	Total registers	49230
	Total pins	179 / 616 (29 %)
	Total virtual pins	0
	Total block memory bits	4,354,756 / 12,492,800 (35 %)
	Total DSP Blocks	3 / 342 (< 1 %)
	Total HSSI RX PCSs	1 / 12 (8 %)
	Total HSSI PMA RX Deserializers	1 / 12 (8 %)
	Total HSSI TX PCSs	1 / 12 (8 %)
	Total HSSI PMA TX Serializers	1 / 12 (8 %)
	Total PLLs	5 / 20 (25 %)
	Total DLLs	0/4(0%)


lote to Table 1-3:

The maximum fractional PLLs listed include general purpose PLLs and transceiver PLLs.

Table 1-6. Package Plan for Cyclone V E, GX, and GT Devices—Preliminary (1)

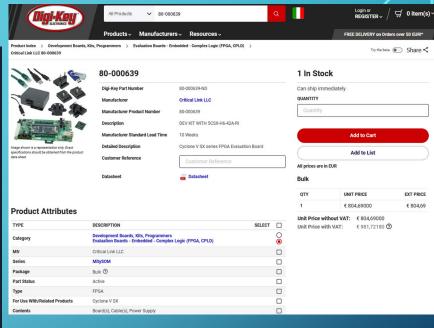
										I		24420		
	F250 (17 m		U324 (15 m		U484 (19 m		F484 (23 m		F67: (27 m		F896 (31 mm)		F115 (35 m	
Device	GPIO	XCVR	GPIO	XCVR	GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO		XCVR	GPIO	XCVR	GP10	XCVR			
5CEA2	▲ 144	_	▲ 176	_	288	_	▲ 288	_	_	_	_	_	_	_
5CEA4	144	_	176	_	288	_	288	_	_	_	_	_	_	_
5CEA5	_	_	_	_	7 272	_	272	_	_	_	_	_	_	_
5CEA7	_	_	_	_	240	_	4 240	_	▲ 336	_	480	_	_	_
5CEA9	_	_	_	_	_	_	224	_	▼ 336	_	† 448	_	_	_
5CGXC3 (2)	_	_	112	3	208	3	▲ 208	3	_	_	_	_	_	_
5CGXC4 (2)	_	_	_	_	224	6	240	6	▲ 336	6	_	_	_	_
5CGXC5 (2)	_	_	_	_	224	6	240	6	336	6	_	_	_	_
5CGXC7 (2)	_	_	_	_	240	6	240	6	336	9	480	9	_	_
5CGXC9 (2)	_	_	_	_	_	_	224	6	336	9	448	12	560	12
5CGTD5 (3)	_	_	_	_	240	6	240	6	▲ 368	6	_	_	_	_
5CGTD7 (3)	_	_	_	_	240	6	240	6	336	9	480	9	_	_
5CGTD9 (3)	_	_	_	_	_	_	224	6	▼ 336	9	448	12	560	12

- Notes to Table 1-6:
- (1) The arrows indicate the package vertical migration capability. You can also migrate your design across device densities in the same packaging option if the devices have the same dedicated pins, configuration pins, and power pins.
- (2) The transceiver counts listed are for 3-Gbps transceivers
- (3) The transceiver counts listed are for 5-Gbps transceivers

> Analysis & Synthesis

Compilation report	aug	x_5c5cop		
of Contents	Fas	t 1100mV 85C Model Setup Summary		
Flow Summary ^	•	< <filter>></filter>		
■ Flow Settings		Clock	Slack	End Point
Flow Non-Default Global Settings	1	rx_input_clock[0]	-0.157	-0.539
Flow Elapsed Time	2	tx_output_clock[0]	0.538	0.000
Flow OS Summary	3	top_daq_pll_inst top_daq_pll_inst altera_pll_i general[0].gpll~PLL_OUTPUT_COUNTER divclk	2.574	0.000
Flow Log	4	top_daq_pll_inst top_daq_pll_inst altera_pll_i general[3].gpll~PLL_OUTPUT_COUNTER divclk	3.856	0.000
Analysis & Synthesis	5	input_clock_125	3.876	0.000
Fitter	6	top_pll_inst top_pll_inst altera_pll_i general[4].gpll~PLL_OUTPUT_COUNTER divclk	5.735	0.000
Assembler	7	clkintop_100_p	5.929	0.000
TimeQuest Timing Analyzer	8	input_clock_50	6.251	0.000
■ Summary	9	altera_reserved_tck	11.795	0.000
== Parallel Compilation	10	n/a	15.679	0.000
■ SDC File List	11	wrapper_inst a5gx_custom_xcvr_inst a5gx_cus_ch inst_av_hssi_8g_rx_pcs wys rcvdclkpma	16.766	0.000
E Clocks	12	top_daq_pll_inst top_daq_pll_inst altera_pll_i general[1].gpll~PLL_OUTPUT_COUNTER divclk	233.146	0.000
Slow 1100mV 85C Model	13	stefano_ethlink_inst ethlink_top_inst eth Pated generic_pll2~PLL_OUTPUT_COUNTER divclk	499.579	0.000
Slow 1100mV 0C Model				
max Summary				
setup Summary				
■ Hold Summary				
Recovery Summary				
Removal Summary				
minimum Pulse Width Summary				
Metastability Summary				
Fast 1100mV 85C Model				
setup Summary				
Hold Summary				

Compilation Report - a5gx_bes_iii_top


2) Cyclone V SX SoC dev. kit Critical Link MitySOM-5CSX

FPGA device: 5CSXFC6C6U23C7N

MitySOM MitySOM-5CSx System on Module 25 April 2019

PRO of MitySOM-5CSX dev. kit:

- dev. kit status: active
- Similar outline as the Arria V GX dev. kit to be replaced
- current GEMROC firmware DOES NOT FIT on the onboard FPGA due to I/O pin count limitation of the onboard FPGA (but it might be used for the GEMROC Fanout modules)
- cost

CONS of MitySOM-5CSX dev. kit:

- onboard FPGA is mature. Status reported on the Intel web site: Launched in 2011
- development kit has different number/position of I/O connectors <-> not same footprint as the Arria V GX dev. kit to be replaced
- could be adapted to the GEMROC module with little redesigning the enclosure

2) Cyclone V SX SoC dev. kit Critical Link MitySOM-5CSX

FPGA device: 5CSXFC6C6U23C7N

Table 1-5. Maximum Resource Counts for Cyclone V SX and ST Devices—Preliminary (Part 1 of 2)

	esource	C	yclone V SX Devic	Cyclone V	ST Device						
, n	esource	5CSXC4	5CSXC5	5CSXC6	5CSTD5	5CSTD6					
ALM		15,094	32,075	41,509	32,075	41,509					
LE		40,000	85,000	110,000	85,000	110,000					
Block Memory	(Kb)	2,240	3,972	5,140	3,972	5,140					
MLAB Memory	/ (Kb)	220	480	621	480	621					
Variable-precis	ion DSP Block	58	87	112	87	112					
18 x 19 Multip	lier	116	174	224	174	224					
FPGA Fractiona	al PLL ⁽¹⁾	5	6	6	6	6					
HPS PLL		3	3	3	3	3					
3-Gbps Transc	eiver	6	9	9	_	_					
5-Gbps Transc	eiver	_	_	_	9	9					
FPGA GPIO		124	288	288	288	288					
HPS I/O		188	188	188	188	188					
LVDS		31	72	72	72	72					

Table 1-5. Maximum Resource Counts for Cyclone V SX and ST Devices—Preliminaly (Part 2 of 2)

Decauses	C	yclone V SX Devid	е	Cyclone V ST Device			
Resource	5CSXC4	5CSXC5	5CSXC6	5CSTD5	5CSTD6		
PCIe Hard IP Block	2	2	2	2	2		
FPGA Memory Controller	1	1	1	1	1		
HPS Memory Controller	1	1	1	1	1		
ARM Cortex-A9 MPCore Processor	Dual-core	Dual-core	Dual-core	Dual-core	Dual-core		

Note to Table 1-5:

Table 1-7. Package Plan for Cyclone V SE, SX, ar<mark>d ST Devices—*Preliminary* (1)</mark>

						,							
U484 Device (19 mm)					U672 (23 mm)					F896 (31 mm)			
	GPIO	XCVR	HPS I/O		GPIO	XCVR	HPS I/O		GP10	XCVR	HPS I/O		
5CSEA2	▲ 66	_	161		124	_	188		_	_	_		
5CSEA4	66	_	161		124	_	188		_	_	_		
5CSEA5	66	_	161		▲ 124	_	188	A	288	_	188		
5CSEA6	▼ 66	_	161		124	_	188	٧	288	_	188		
5CSXC4 (2)	_	_	_		124	6	188		_	_	_		
5CSXC5 (2)	_	_	_		124	6	188	4	288	9	188		
5CSXC6 (2)	_	_	_		124	6	188		288	9	188		
5CSTD5 (3)	_	_	_		_	_	_		288	9	188		
5CSTD6 (3)	_	_	-		_	_	_	٧	288	9	188		
		. —		_				. –					

Notes to Table 1–7

(3) The transceiver counts listed are for 5-Ghps transceive

Resource count of the SOM Module's FPGA would fit the GEMROCformware design but not the FPGA's pin count.

Critical Link, LLC www.CriticalLink.com

FEATURES

MitySOM-5CSX Development Board

MitySOM-5CSX SoM Module

Additional Hardware Included:

- UART to USB Cable
- Ethernet Cable
- AC to DC 24V 2.7A Adapter

Integrated +2.5V/+3.3V/+5V/+12V Power Supplies

ATX Power Supply Compatible

Digital Interfaces:

- 10/100/1000 MBit Ethernet Interface
- Debug UART to USB
- USB OTG Interface
- Dual Electrically Isolated CAN Bus Interfaces
- SD/MMC Card Socket

Expansion

- Full HSMC Interface
- Partial HSMC Interface

PCI-e x4

Critical Link, LLC www.CriticalLink.com MitySOM MitySOM-5CSx System on Module 25 April 2019

FEATURES

- Intel Cyclone V U672 SoC
 - Up To Dual ARM Cortex- A9 MPU
 - 925MHz Max clock speed
 - Dual NEON SIMD Coprocessors
 - 32 KB L1 Program Cache (per core)
- 32 KB L1 Data Cache (per core)
 512 KB L2 Cache (shared)
- 64 KB on-chip RAM
- ECC Support
- Up To 133 User FPGA I/O Pins
- 44 CPU I/O Pins
- 6 High speed transceivers (SX only)

Cyclone V Processor Choices

- Cyclone V SX (3.125 Gbps transceivers)
- Cyclone V SE

• Memory

6 August 2014

- Up To 2GB DDR3 CPU RAM x32 bits + ECC
- Up To 512MB DDR3 FPGA RAM x8 bits (optional)
- MitySOM-5CSX Develor.... Up To 272MB QPSI NOR FLASH

Mechanical

- 314-Pin Card Edge Connector
- Small 82mm (3.2") x 39mm (1.5") size

Hard Processor System (HPS)

- Selection of boot sources
- Up to 2 10/100/1000 Mbps Ethernet
 MACs
- Up to 2 USB 2.0 OTG Ports
- Up to 2 CAN Interfaces
- Up to 2 UARTs
- 1 MMC/SD/SDIO
- Up to 4 I2C controllers
- Up to 2 master/2 slave SPI
- 3 HPS PLLs

Software and Documentation:

- Linux Kernel
- uBoot
- Development Environment Virtual Machine
- · Development Board Schematics
- Development Board Gerber Files
- Development Board BOM

APPLICATIONS

- MitySOM-5CSX Evaluation
- Test and Measurement
- Factory Automation
- Industrial Automation
- Embedded Instrumentation
- Test and Measurement
- Rapid Prototyping

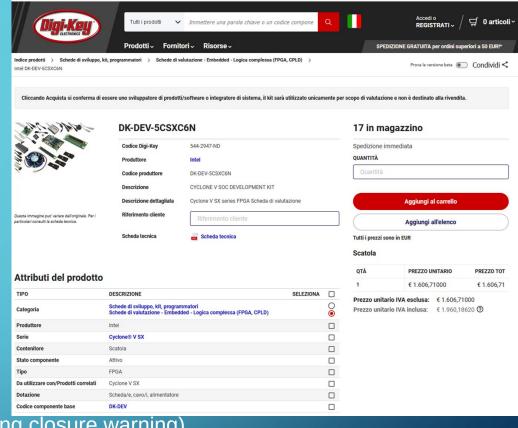
⁽¹⁾ The maximum FPGA fractional PLLs listed include FPGA general purpose PLLs and transceiver PLLs.

⁽¹⁾ The arrows indicate the package vertical migration capa ility. You can also migrate your design across d vice densities in the same packaging option if the devices have the same dedicated pins, configuration pins, and power pins.

⁽²⁾ The transceiver counts listed are for 3-Gbps transceiver

3) Cyclone V SX SoC dev. kit Intel DK-DEV-5CSXC6N

FPGA device: 5CSXFC6D6F31C6N



PRO of Cyclone V SX dev. Kit Intel DK-DEV-5CSXC6N:

- dev. kit status: active
- current GEMROC firmware fits the onboard FPGA (with timing closure warning)

CONS of Cyclone V SX dev. Kit Intel DK-DEV-5CSXC6N:

- onboard FPGA is mature. Status reported on the Intel web site: Launched in 2011
- development kit has different outline and number/position of I/O connectors <-> not same footprint as the Arria V GX dev. kit to be replaced
- can't be adapted to the GEMROC module without redesigning the enclosure / using an HSMC to HSMC cable adapter
- cost

3) Cyclone V SX SoC dev. kit Intel DK-DEV-5CSXC6N

FPGA device: 5CSXFC6D6F31C6N

Table 1-5. Maximum Resource Counts for Cyclone V SX and ST Devices—Preliminary (Part 1 of 2)

Resource	С	yclone V SX Devic	e	Cyclone V	ST Device
Kesource	5CSXC4	5CSXC5	5CSXC6	5CSTD5	5CSTD6
ALM	15,094	32,075	41,509	32,075	41,509
LE	40,000	85,000	110,000	85,000	110,000
Block Memory (Kb)	2,240	3,972	5,140	3,972	5,140
MLAB Memory (Kb)	220	480	621	480	621
Variable-precision DSP Block	58	87	112	87	112
18 x 19 Multiplier	116	174	224	174	224
FPGA Fractional PLL (1)	5	6	6	6	6
HPS PLL	3	3	3	3	3
3-Gbps Transceiver	6	9	9	_	_
5-Gbps Transceiver	_	_	_	9	9
FPGA GPIO	124	288	288	288	288
HPS I/O	188	188	188	188	188
LVDS	31	72	72	72	72

QUARTUS PRIME (STANDARD **VERSION) COMPILATION RESULTS:**

Flow summary:

Fmax Summary

Setup Summary

Hold Summary

Recovery Summan

Removal Summary

East 1100mV 85C Model

Advanced I/O Timing

Multicorner Timing Analysis Summar

Timing closure report: paths with failing (probably recoverable) timing closure only for more pessimistic corners

Table 1-5. Maximum Resource Counts for Cyclone V SX and ST Devices—Prelimina v (Part 2 of 2)

	C	yclone V SX Devi	d <mark>e</mark>	Cyclone V	ST Device	Quartus Prime Standard Edition - C:/angelo/BES_III/a5gx_bes	_iii_top/a5gx_bes_iii_top - a5g	x_bes_iii_top			
Resource	5CSXC4	5CSXC5	5CSXC6	5CSTD5	5CSTD			4 6 6			
PCIe Hard IP Block	2	2	2	2	2	Project Navigator					
FPGA Memory Controller	1	1	1	1	1	Entity:Instance	ALMs needed [=A-B+C]				
HPS Memory Controller	1	1	1	1	1	△ Cyclone V: 5CSXFC6D6F31C6	ALL IS RECOGNET AT STEEL	p q nen is as			
ARM Cortex-A9 MPCore Processor	Dual-core	Dual-core	Dual-core	Dual-core	Dual-co	Y 👼 a5gx_bes_iii_top 🛅	17528.0 (176.6)	22972.5 (197			
Note to Table 1-5:						stretcher:Delay_RemoteHardRst	38.7 (38.7)	39.4 (39.4)			

Notes to Table 1-7:

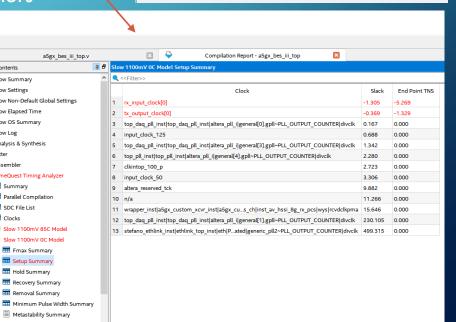
⁽¹⁾ The maximum FPGA fractional PLLs listed include FPGA general purpose PLLs and transceiver PLLs.

able 1–7. Package Pian for Cyclone V SE, SX, and ST Devices— <i>Preliminary</i> ⁽¹⁾											
Device	U484 (19 mm)			U672 (23 mm)				F896 (31 mm)			
	GPIO	XCVR	HPS I/O	GPIO	XCVR	HPS I/O	Г	GPIO	XCVR	HPS I/O	
5CSEA2	▲ 66	_	161	▲ 124	_	188	Г	_	_	_	
5CSEA4	66	_	161	124	_	188	Г	_	_	_	
5CSEA5	66	_	161	124	_	188	Г	▲ 288	_	188	
5CSEA6	▼ 66	_	161	▼ 124	_	188	Г	288	_	188	
5CSXC4 (2)	_	_		124	6	188	Г	_	_	_	
5CSXC5 (2)	_	_	_	124	6	188	Г	288	9	188	
5CSXC6 (2)	_	_	_	124	6	188		288	9	188	
5CSTD5 (3)	_	_	_	T -	_	_		288	9	188	
5CSTD6 (3)	_	_	_	_	_	_		288	9	188	

(1) The arrows indicate the package vertical migration capability. You can also migrate your design actors device densities in the same packaging

option if the devices have the same dedicated pins, configuration pins, and power pins.

(2) The transceiver counts listed are for 3-Gbps transceivers.


(3) The transceiver counts listed are for 5-Ghps transceivers.

▼ Q 🗓 🗗 × 🔷 oject Navigator ALMs needed [=A-B+C] [A] ALMs used in final placement ^ Table of Contents Entity/Instance Flow Summary Cyclone V: 5CSXFC6D6F31C6 Flow Settings a5gx_bes_iii_top 🛅 17528.0 (176.6) 22972.5 (197.9) Flow Non-Default Global Settings stretcher:Delay RemoteHardRst 39.4 (39.4) Flow Elapsed Time top_TIGER_merger_TL_TM:FEBO_TIGER_merger_inst 579.4 (352.6) 722.3 (425.3) Flow OS Summary top TIGER_merger_TL_TM:FEB1_TIGER_merger_inst 708.3 (407.1) Flow Log top_TIGER_merger_TL_TM:FEB2_TIGER_merger_inst 658.2 (419.8) Analysis & Synthesis Fitter InDDR:InDDR_T0_gen[0].InDDRT0 0.0 (0.0) 0.0 (0.0) Assemble InDDR:InDDR_T0_gen[1].InDDRT0 0.0 (0.0) ▼ TimeQuest Timing Analyze InDDR:InDDR T1 gen[0].InDDRT1 0.0 (0.0) 0.0 (0.0) Summary InDDR:InDDR_T1_gen[1].InDDRT1 0.0 (0.0) 0.0 (0.0) == Parallel Compilation 0.0 (0.0) InDDR:InDDR_T2_gen[0].InDDRT2 0.0 (0.0) SDC File List InDDR:InDDR T2 gen[1].InDDRT2 0.0 (0.0) 0.0 (0.0) InDDR:InDDR T3 gen[0].InDDRT3 0.0 (0.0) 0.0 (0.0) Slow 1100mV 85C Mode InDDR:InDDR_T3_gen[1].InDDRT3 0.0 (0.0) 0.0 (0.0) ✓ F
Slow 1100mV 0C Model InDDR:InDDR T4 gen[0].InDDRT4 0.0 (0.0) 0.0 (0.0) InDDR:InDDR_T4_gen[1].InDDRT4 0.0 (0.0) 0.0 (0.0) InDDR:InDDR_T5_gen[0].InDDRT5 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) InDDR:InDDR_T5_gen[1].InDDRT5 0.0 (0.0) InDDR:InDDR T6 gen[0].InDDRT6 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) InDDR:InDDR_T6_gen[1].InDDRT6 InDDR:InDDR_T7_gen[0].InDDRT7 0.0 (0.0) Compilation ▼ **□** ₽ × Fast 1100mV 0C Model

✓ Compile Design

Flow Summary <<Filter>> Flow Status Successful - Thu Feb 03 09:59:48 2022 Quartus Prime Version 16.1.0 Build 196 10/24/2016 SJ Standard Edition Revision Name a5gx bes iii top Top-level Entity Name a5gx bes iii top Family Cyclone V 5CSXFC6D6F31C6 Device Timing Models Final 17,528 / 41,910 (42 %) Logic utilization (in ALMs) 35487 Total registers 179 / 499 (36 %) Total pins Total virtual pins Total block memory bits 4,067,396 / 5,662,720 (72 %) Total DSP Blocks 3 / 112 (3%) Total HSSI RX PCSs 1/9(11%) Total HSSI PMA RX Deserializers 1/9(11%) Total HSSI TX PCSs 1/9(11%) Total HSSI PMA TX Serializers 1/9(11%) Total PLLs 5 / 15 (33 %)

0/4(0%)

Total DLLs

4) Cyclone 10 GX dev. kit Trenz TEI0006-03-220-51

FPGA device: 10CX220YF780I5G

NOTE: porting of GEMROC firmware onto this platform in progress (A.C.R.): moving to Quartus Pro 20.4 (QSys → Platform Developer) requires updating all currently instantiated Intel/ALTERA IP blocks

PRO of Cyclone 10 GX dev. kit Trenz TEI0006-03-220-5I:

- dev. kit status: active;
- onboard FPGA (20nm TSMC) launched in 2017 with EOL in 2032
- Small outline: 6cm x 8cm
- •/ cost

CONS of Cyclone 10 GX dev. kit Trenz TEI0006-03-220-5I:

- neither the module itself nor the motherboard carrying the module (see next slide) have number/position of I/O connectors compatible the Arria V GX dev. kit to be replaced
- a dedicated adapter to the GEMROC module would have to be designed; it could be made to fit the existing GEMROC module enclosure

€498.00 (592.62 € gross) *

expected to be available on 05-Aug-2022

1.0	Man to shopping care	
Remember		
Order number:	TEI0006-03-220-5I	
In Stock:	0	
Article status:	Full production	
Quantity	Unit price	
To 9	€498.00 (592.62 € gross) *	
From 10	€448.20 (533.36 € gross) *	
From 25	€448 20 (533 36 € gross) *	

Contacts with Trenz to see if prototypes could be obtained sooner. Lead time is due to contingent semiconductors shortage

Product information "FPGA Module with Intel Cyclone 10 GX 10CX220, 2 GByte DDR3L, 6 x 8 cm"

The predecessor of this article is TEI0006-02-220-5I. All changes are in the Product Change Notification (PCN).

The Trenz Electronic TEI0006 is an industrial grade module based on Intel Cyclone 10 GX. The Intel Cyclone 10 GX device family delivers higher core, transceiver, and I/O performance than the previous generation of low cost FPGAs.

Key Features

- Intel Cyclone 10 GX Industrial [10CX220YF780I5G]
 - Package: FBGA-780
 - Speed Grade: 5 (Fastest)
 - Temperature: -40°C to 100°C
 - Package compatible device, 10CX150 and 10CX105 as assembly variant on reques
- 2 x SDRAM DDR3L memory IC 8 Gbit (1 GByte), Half rate: 533 MHz; Quarter rate: max. 800 MHz
- 2 x SPI Flash, 1 Gbit (128 MBvte)
- 1 x Gigabit Ethernet
- · Programmable oscillator
- Intel MAX 10 as system controller (CPLD)
- 2 KBit EEPROM memory
- 4 x User LEDs
- I/O interfaces: 226/94/46 (IO's/DIFF. Pairs/LVDS Pairs)
- Board to Board (B2B) connection: plug-on module with 3 x 160-pin Samtec Razor Beam (ST5) connectors
- 5 V power supply
- size: 6 x 8 cm

4) Cyclone 10 GX dev. kit Trenz TEI0006-03-220-5I

FPGA device: 10CX220YF780I5G

Intel® Cyclone® 10 GX Device Overview 683485 | 2019.04.01

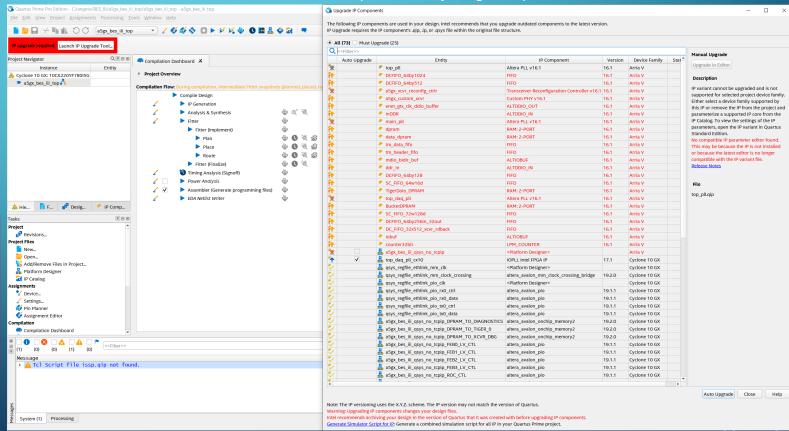
Intel Cyclone 10 GX Maximum Resources

Table 4. Maximum Resource Counts for Intel Cyclone 10 GX Devices

	Resource		Produc	ct Line	
		10CX085	10CX105	10CX150	10CX220
Logic Eler	ments (LE) (K)	85	104	150	220
ALM		31,000	38,000	54,770	80,330
Register		124,000	152,000	219,080	321,320
Memory	M20K	5,820	7,640	9,500	11,740
(Kb)	MLAB	653	799	1,152	1,690
Variable-precision DSP Block		84	125	156	192
18 x 19 Multiplier		168	250	312	384
Hard Floa	ting-point Arithmetic	Yes	Yes	Yes	Yes
PLL	Fractional Synthesis	2	4	4	4
	I/O	4	6	6	6
12.5 Gbps	ps Transceiver 6		12	12 12	
GPIO (2)		216	284	284	284
LVDS Pair	(3)	84	118	118	118
PCIe Hard	I IP Block	1	1	1	1
Hard Men	nory Interfaces	1	2	2	2

Intel Cyclone 10 GX Package Plan

Table 5. Package Plan for Intel Cyclone 10 GX Devices


The GPIO numbers include the I/O pins in the LVDS and 3 VI/O banks. In each device package, there is one 3 VI/O bank (48 pins).

_											
Product Line Type		41	U484 34-pin UB(GA.	67	F672 72-pin FB6	iΑ	F780 780-pin FBGA			
	Size	19	mm × 19	mm	27	mm × 27 ı	mm	29 mm × 29 mm			
	Ball Pitch		0.8 mm		1.0 mm			1.0 mm			
	I/O Type	GPI0	LVDS	XCVR	GPI0	LVDS	XCVR	GPI0	LVDS	XCVR	
10CX08	35	188	70	6	216	84	6	-	-	_	
10CX10)5	188	70	6	236	94	10	284	118	12	
10CX15	50	188	70	6	236	94	10	284	118	12	
10CX22	20	188	70	6	236	94	10	284	118	12	
10CX22	20	188	70	6	236	94	10	284	11	8	

⁽²⁾ The number of GPIOs does not include transceiver I/Os. In the Intel Quartus Prime Pro Edition software, the number of user I/Os includes transceiver I/Os.

QUARTUS PRIME PRO EDITION 20.4 COMPILATION RESULTS: MANUAL IP UPGRADE IS REQUIRED (work in progress)

⁽³⁾ Each LVDS I/O pair can be used as differential input or output.

4bis Cyclone 10 GX dev. kit Trenz TEI0006-03-ALC13A

FPGA device: 10CX105YF780E5G

Product information "FPGA Module with Intel Cyclone 10 GX 10CX105, 128 MByte DDR3L, 8 x 6 cm'

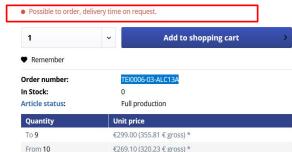
The Trenz Electronic TEI0006 is an industrial grade module based on Intel Cyclone 10 GX. The Intel Cyclone 10 GX device family delivers higher core, transceiver, and I/O performance than the previous generation of low cost FPGAs.

Key Features

- Intel Cyclone 10 GX Industrial [10CX105YF780E5G]
- Package: FBGA-780
- Chood Grado: E (Eac
- o Temperature: -40°C to 100°C
- Package compatible device, 10CX150 and 10CX105 as assembly variant on request
- 128 MBvte DDR3L SDRAM
- 2 x SPI Flash, 1 Gbit (total: 256 MByte)
- 1 x Gigabit Ethernet
- · Programmable oscillator
- Intel MAX 10 as system controller (CPLD)
- 2 KBit EEPROM memory
- 4 x User LEDs
- I/O interfaces: 226/94/46 (IO's/DIFF. Pairs/LVDS Pairs)
- Board to Board (B2B) connection: plug-on module with 3 x 160-pin Samtec Razor Beam (ST5) connectors
- 5 V power supply
- size: 6 x 8 cm

A less performant, same footprint version of the Trenz Cyclone 10 GX dev. kit of the previous slide exist

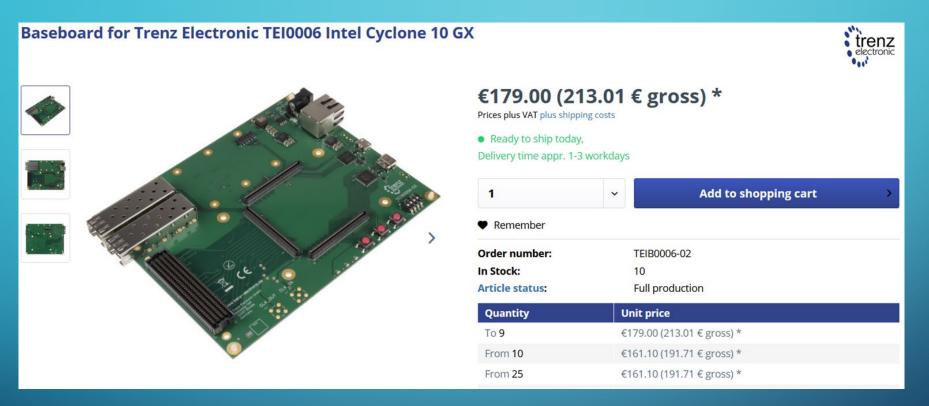
It could be matched to less demanding applications PROs of Cyclone 10 GX dev. kit Trenz TEI0006-03-ALC13A:

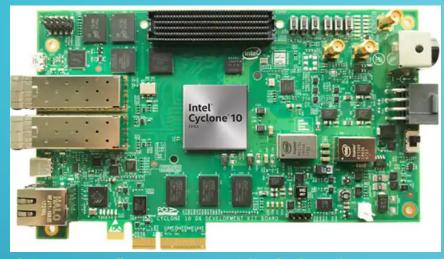

- dev. kit status: active;
- onboard FPGA (20nm TSMC) launched in 2017 with EOL in 2032
- small outline: 6cm x 8cm
- cost

FPGA Module with Intel Cyclone 10 GX 10CX105, 128 MByte DDR3L, 8 x 6 cm

€299.00 (355.81 € gross) *

Prices plus VAT plus shipping costs

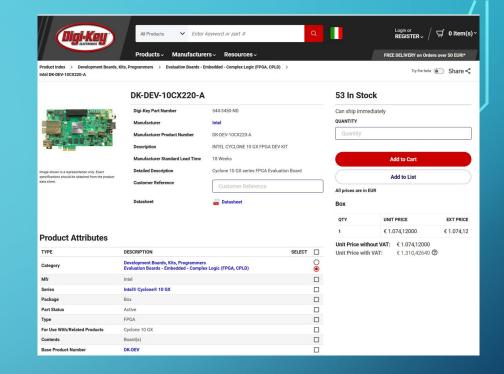



4ter) Cyclone 10 GX dev. kit Trenz carrier board

The simple and functional carrier board shown below provides expansion ports (Ethernet, SFP, FMC) to the Cyclone 10 GX modules presented in the previous slides

5) Cyclone 10 GX dev. kit Intel DK-DEV-10CX220-A

FPGA device: 10CX220YF780E5G


NOTE: porting of GEMROC firmware onto this platform in progress (A.C.R.): moving to Quartus Pro 20.4 (QSys → Platform Developer) requires updating all currently instantiated Intel/ALTERA IP blocks

PRO of Cyclone 10 GX dev. kit Intel DK-DEV-10CX220-A:

- dev. kit status: active;
- onboard FPGA (20nm TSMC) launched in 2017 with EOL in 2032
- similar outline as the Arria V GX dev. kit to be replaced
- cost

CONS of Cyclone 10 GX dev. kit Intel DK-DEV-10CX220-A:

- the module has a footprint NOT COMPATIBLE, for number/position of I/O connectors, with the Arria V GX dev. kit to be replaced
- a dedicated adapter to the GEMROC module would have to be designed; it could probably be made to fit the existing GEMROC module enclosure

5) Cyclone 10 GX dev. kit Intel DK-DEV-10CX220-A

FPGA device: 10CX220YF780E5G

Intel® Cyclone® 10 GX Device Overview 683485 | 2019.04.01

Intel Cyclone 10 GX Maximum Resources

Table 4. Maximum Resource Counts for Intel Cyclone 10 GX Devices

			-		
	Resource		Produc	ct Line	
		10CX085	10CX105	10CX150	10CX220
Logic Eler	ments (LE) (K)	85	104	150	220
ALM		31,000	38,000	54,770	80,330
Register		124,000	152,000	219,080	321,320
Memory	M20K	5,820	7,640	9,500	11,740
(Kb)	MLAB	653	799	1,152	1,690
Variable-p	e-precision DSP Block 84		125	156	192
18 x 19 M	Iultiplier	168	250	312	384
Hard Floa	ting-point Arithmetic	Yes	Yes	Yes	Yes
PLL	Fractional Synthesis	2	4	4	4
	I/O	4	6	6	6
12.5 Gbps	Transceiver	6	12	12	12
GPIO (2)		216	284	284	284
LVDS Pair	(3)	84	118	118	118
PCIe Hard	IP Block	1	1	1	1
Hard Men	nory Interfaces	1	2	2	2

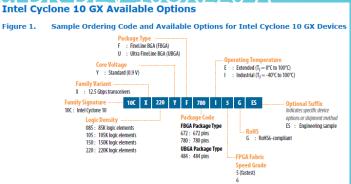
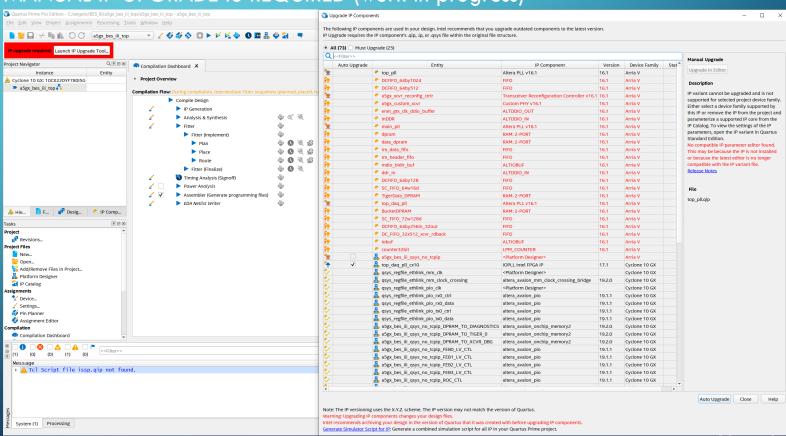

Intel Cyclone 10 GX Package Plan

Table 5. Package Plan for Intel Cyclone 10 GX Devices


The GPIO numbers include the I/O pins in the LVDS and 3 VI/O banks. In each device package, there is one 3 VI/O bank (48 pins).

_											
Product Line Type		41	U484 34-pin UB(GA.	67	F672 72-pin FB6	iΑ	F780 780-pin FBGA			
	Size	19	mm × 19	mm	27	mm × 27 ı	mm	29 mm × 29 mm			
	Ball Pitch		0.8 mm		1.0 mm			1.0 mm			
	I/O Type	GPI0	LVDS	XCVR	GPI0	LVDS	XCVR	GPI0	LVDS	XCVR	
10CX08	35	188	70	6	216	84	6	-	-	_	
10CX10)5	188	70	6	236	94	10	284	118	12	
10CX15	50	188	70	6	236	94	10	284	118	12	
10CX22	20	188	70	6	236	94	10	284	118	12	
10CX22	20	188	70	6	236	94	10	284	11	8	

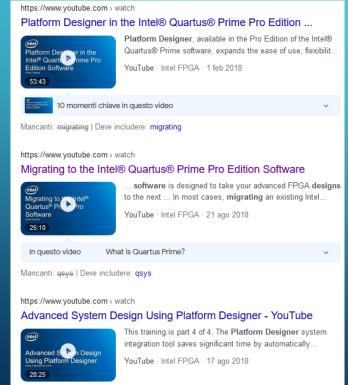
⁽²⁾ The number of GPIOs does not include transceiver I/Os. In the Intel Quartus Prime Pro Edition software, the number of user I/Os includes transceiver I/Os.

QUARTUS PRIME PRO EDITION 20.4 COMPILATION RESULTS: MANUAL IP UPGRADE IS REQUIRED (work in progress)



⁽³⁾ Each LVDS I/O pair can be used as differential input or output.

Migrating designs to the Intel Quartus Pro Edition


Intel® Quartus® Prime Standard Edition

The Intel® Quartus® Prime Standard Edition Software includes extensive support for earlier device families in addition to the Intel® Cyclone® 10 LP device family.

Intel® Quartus® Prime Pro Edition

The Intel® Quartus® Prime Pro Edition Software is optimized to support the advanced features in next-generation FPGAs and SoCs with the Intel® Agilex™, Intel® Stratix® 10, Intel® Arria® 10, and Intel® Cyclone® 10 GX device families.

Migrating designs to the Intel Quartus Pro Edition

Update Assignments to Reference Instances Only

Other Intel® Quartus® Prime software products

- Assignments to instantiated entities must reference both entity and instance names in project hierarchy
- Example: entity a:a|entity b:b|entity c:c

Quartus Prime Pro Edition

- Entity names should no longer be used in assignments; use instance names only
- Entity names still accepted by the compiler (for now) but are ignored and generate warning messages
- Example: a|b|c

Action: remove entity names from existing assignments directly in .qsf file or through Assignment Editor, and avoid using them in new assignments

Check Entity Name Use in .sdc and Related Scripts

Other Intel® Quartus® Prime software products

 Supports use of both entity and instances names for constraints, similar to their use in project assignments

Intel Quartus Prime Pro Edition

- Continues to support use of both entity and instance names with no generated warnings
- However, certain commands in scripts that perform custom name processing return strings without entity names
- Processing of returned strings must reflect this
- get_registers example that works in all Quartus products due to wildcard use:

Check References to Synthesized Node Names

- Names may change significantly between other Intel® Quartus® Prime software product projects and Intel Quartus Prime Pro Edition
 - Names never guaranteed to remain consistent in other Quartus software products
 - More significant changes when moving to Pro Edition
- Example: foo~123 may synthesize in Pro Edition as foo.567
- Check .qsf, .sdc, and Tcl script references to synthesized nodes
- Use Node Finder to help locate and fix
- Also check names of duplicated registers and PLL clock outputs

intel

Migrating to the Intel® Quartus® Prime Pro

Software

How Do I Migrate?

- Update your project assignments (.qsf), timing constraints (.sdc), and Tcl scripts
- Regenerate your IP
- Adjust your RTL for the new Intel® Quartus® Prime Pro synthesis engine

Why Regenerate IP?

In other Intel® Quartus® Prime Software products

- Proprietary Verilog configuration scheme used in the top level of all IP cores and Platform Designer for synthesis
- Prevents ambiguous instantiation errors during synthesis due to identical naming or multiple instantiations of RTL entities
- Still potential for such errors during simulation, requiring a fix
 - Create separate Verilog configuration
 - Delete duplicate entities
 - Rename conflicting entities

In Intel Quartus Prime Pro Edition

- Proprietary Verilog configuration not used or supported
- All variants of a particular core (even with identical parameterization and functionality) compiled into the same library for entire project
 - Example: all variants of Intel® Arria® 10 PCIe* core compiled into altera_pcie_a10_hip_151 library
- Simulation and synthesis file sets instantiate entities identically
- Generated IP file directory structure now matches compilation library

Programmable Solutions Group

Conclusione:

Penso sia meglio partire da un progetto di esempio in Quartus Prime Pro edition ed integrare i moduli specifici di BES-III dedicati mano a mano....

How Do I Migrate?

- Update your project assignments (.qsf), timing constraints (.sdc), and Tcl scripts
- Regenerate your IP
- Adjust your RTL for the new Intel® Quartus® Prime Pro synthesis engine
 - Discussed in free online training "Using the synthesis engine in the Quartus Prime Software"
- http://wl.altera.com/education/training/courses/OSYNQPRO