





Elena Gramellini Lederman Fellow, Fermilab on behalf of the MicroBooNE Collaboration LNF General Seminar, April 13<sup>th</sup> 2022



# Talk Roadmap



The LArTPC technology & the MicroBooNE experiment

### **MicroBooNE Recent Results**:

→ 3 complementary searches for a  $v_e$  excess → the photon search



# Talk Roadmap



The LArTPC technology & the MicroBooNE experiment

### **MicroBooNE Recent Results:**

→ 3 complementary searches for a  $v_e$  excess → the photon search



### Neutrinos: puzzles of the Standard Model

Neutrinos are **the most abundant massive particles** in the universe...

...and one of the least understood.







Neutrino Oscillations: Massive Neutrinos are a 1<sup>st</sup> Glance at Physics Beyond the Standard Model!



"for the discovery of neutrino oscillations, which shows that neutrinos have mass"



Precision measurements of 3 flavor mass and mixing (~10%)

Many open questions: Mass Hierarchy Absolute Mass CP Violation in v sector Nature of Neutrinos Neutrinos and Cosmology

BSM physics in Neutrino Sector New neutrinos New forces Exotic phenomena



### **3-Flavors Neutrino Oscillations**





### **3-Flavors Neutrino Oscillations**

# Neutrinos interact via the but they propagate through space/time as states of definite flavor $\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$

Measuring the mixing parameters with high precision gives us new information on neutrinos!



# Neutrino Oscillations: A Simple 2 Flavors Example



(Some) neutrinos come from particle's decay: Flavor States!

### Propagation

Quantum-Mechanic propagation: Mass States!

$$|
u,t
angle = \sum_{i} U_{\mu i}^{*} e^{-iE_{i}t} |
u_{i}
angle$$

They interact by exchanging a W/Z boson: Flavor States!



# Neutrino Oscillations: A Simple 2 Flavors Example



### Muon neutrino disappearance

### **Electron neutrino appearance**

$$P(\boldsymbol{\nu_{\mu}} \rightarrow \boldsymbol{\nu_{e}}) \sim sin^{2}2\theta * sin^{2}\left(\Delta m^{2}\frac{L}{E}\right)$$



### Neutrino Oscillations: A Simple 2 Flavors Example





### **3-Flavors Neutrino Oscillations**





Elena Gramellini, FNAL

**µBooN** 

# Escaping 3-flavor oscillations



 $v_{\chi}$ 

The existence of a 4th, sterile neutrino would arise as a deviation from the predicted 3-flavor oscillation pattern at a baseline corresponding to the appropriate  $\Delta m^2$ .  $\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$ 



 $\nu_4$ 

Observed in neutrino experiments in the last 20 years: **Deficit** of anti- $v_e$  detected from nuclear reactors (reactor anomaly).





Observed in neutrino experiments in the last 20 years: **Deficit** of anti- $v_e$  detected from nuclear reactors (reactor anomaly). **Deficit** of  $v_e$  from intense calibration sources in solar v experiments (gallium anomaly).





Observed in neutrino experiments in the last 20 years: **Deficit** of anti- $v_e$  detected from nuclear reactors (reactor anomaly). **Deficit** of  $v_e$  from intense calibration sources in solar v experiments (gallium anomaly). **Excess** of  $v_e$ /anti- $v_e$  in  $v_{\mu}$ /anti- $v_{\mu}$  beams at particle accelerators (LSND & MiniBooNE).





Observed in neutrino experiments in the last 20 years: **Deficit** of anti- $v_{a}$  detected from nuclear reactors (reactor anomaly). **Deficit** of  $v_e$  from intense calibration sources in solar v experiments (gallium anomaly). **Excess** of  $v_e/anti-v_e$  in  $v_{\mu}/anti-v_{\mu}$  beams at particle accelerators (LSND & MiniBooNE).



Observed in neutrino experiments in the last 20 years: **Deficit** of anti- $v_e$  detected from nuclear reactors (reactor anomaly). **Deficit** of  $v_e$  from intense calibration sources in solar v experiments (gallium anomaly). **Excess** of  $v_e$ /anti- $v_e$  in  $v_{\mu}$ /anti- $v_{\mu}$  beams at particle accelerators (LSND & MiniBooNE).



Elena Gramellini, FNAL

**µBooNE** 

Observed in neutrino experiments in the last 20 years: **Deficit** of anti- $v_e$  detected from nuclear reactors (reactor anomaly). **Deficit** of  $v_e$  from intense calibration sources in solar v experiments (gallium anomaly). **Excess** of  $v_e$ /anti- $v_e$  in  $v_{\mu}$ /anti- $v_{\mu}$  beams at particle accelerators (LSND & MiniBooNE).



Elena Gramellini, FNAL

**µBooNE** 

Observed in neutrino experiments in the last 20 years: **Deficit** of anti- $v_e$  detected from nuclear reactors (reactor anomaly). **Deficit** of  $v_e$  from intense calibration sources in solar v experiments (gallium anomaly). **Excess** of  $v_e$ /anti- $v_e$  in  $v_{\mu}$ /anti- $v_{\mu}$  beams at particle accelerators (LSND & MiniBooNE).

| Experiment  | Туре               | Channel                                                                              | Significance |
|-------------|--------------------|--------------------------------------------------------------------------------------|--------------|
| GALLEX/SAGE | Source – e capture | $v_{e}$ disappearance                                                                | 2.8 σ        |
| Reactors    | β decay            | $\overline{v}_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 3.0 σ        |
| LSND        | DAR accelerator    | $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$                                | 3.8 σ        |
| MiniBooNE   | SBL accelerator    | $     \nu_{\mu} \rightarrow \nu_{e} $                                                | 4.5 σ        |
|             |                    | $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$                                | 2.8 σ        |



Observed in neutrino experiments in the last 20 years: **Deficit** of anti- $v_e$  detected from nuclear reactors (reactor anomaly). **Deficit** of  $v_e$  from intense calibration sources in solar v experiments (gallium anomaly). **Excess** of  $v_e$ /anti- $v_e$  in  $v_{\mu}$ /anti- $v_{\mu}$  beams at particle accelerators (LSND & MiniBooNE).



While independent explanations are not excluded, a unifying "vanilla" hypothesis exists: mixing of the standard neutrinos with a fourth, non–weakly interacting sterile species: motivates new experiments!

Disfavored by non-observation of  $\nu_{\mu}$  disappearance: motivates richer phenomenology!



### MiniBooNE is a mineral oil Cherenkov Detector: PID from the Cherenkov rings, no hadron information.







### MiniBooNE is a mineral oil Cherenkov Detector: PID from the Cherenkov rings, no hadron information.





### MiniBooNE is a mineral oil Cherenkov Detector: PID from the Cherenkov rings, no hadron information.



Low Energy Excess could be "electron-like" (eLEE) or "photon-like" (γLEE)

If photon-like (γLEE): could be a misunderstood background?

If electron-like (eLEE):  $v_e$  appearance at an L/E not consistent with standard three neutrino oscillations  $\rightarrow$  a sterile neutrino?



### MiniBooNE is a mineral oil Cherenkov Detector: PID from the Cherenkov rings, no hadron information.



Low Energy Excess could be "electron-like" (eLEE) or "photon-like" (γLEE)

If photon-like (γLEE): could be a misunderstood background?

If electron-like (eLEE):  $v_e$  appearance at an L/E not consistent with standard three neutrino oscillations  $\rightarrow$  a sterile neutrino?



















Probing MiniBooNE... with MicroBooNE!

# Talk Roadmap



# The LArTPC technology & the MicroBooNE experiment

### **MicroBooNE Recent Results:**

→ 3 complementary searches for a  $v_e$  excess → the photon search



### LArTPC\*: a Crash Course

 $\rightarrow$  A block of Ar



\*LArTPC for  $\nu$  pioneered in Italy by the ICARUS





# LArTPC: a Crash Course

 $\rightarrow$  A block of Ar

- $\rightarrow$  Sandwich it in a parallel planes capacitor:
  - Cathode at negative HV
  - Segmented anode to see the charge signal





# LArTPC: a Crash Course

 $\rightarrow$  A block of Ar

- $\rightarrow$  Sandwich it in a parallel planes capacitor:
  - Cathode at negative HV
  - Segmented anode to see the charge signal
- $\rightarrow$  Create an electric field as uniform and as constant as possible



# LArTPC: a Crash Course

 $\rightarrow$  A block of Ar

- $\rightarrow$  Sandwich it in a parallel planes capacitor:
  - Cathode at negative HV
  - Segmented anode to see the charge signal
- $\rightarrow$  Create an electric field as uniform and as constant as possible
- → Equip with a light collection system (usually mounted behind the anode)


## LArTPC: Working Principles

- Energy loss by charged particles: Ionization and Excitation of Ar
- 2. Prompt scintillation light emission by Ar<sub>2</sub><sup>+</sup> starts clock: the light arrives to the light collection system in matter of ns

ν





## LArTPC: Working Principles

- Energy loss by charged particles: Ionization and Excitation of Ar
- 2. Prompt scintillation light emission by Ar<sub>2</sub><sup>+</sup> starts clock: the light arrives to the light collection system in matter of ns





## LArTPC: Working Principles

- Energy loss by charged particles: Ionization and Excitation of Ar
- 2. Prompt scintillation light emission by Ar<sub>2</sub><sup>+</sup> starts clock: the light arrives to the light collection system in matter of ns
- Electrons drift to anode: the charge arrives to the anode in matter of ms depending on detector size. (Ar<sup>+</sup> ions drift to cathode)
- 4. Moving electrons induce currents on wires
- 5. Tracks are reconstructed from wire signals and matched to recover a 3D images



**µBooNE** 



# LArTPC in action

**Extremely detailed 3D images + calorimetry + PID:** unprecedented tool for neutrino interactions & BSM physics

NUMI DATA : RUN 5440 EVENT 2577. MARCH 15, 2016



V

# LArTPC in action

**Extremely detailed 3D images + calorimetry + PID:** unprecedented tool for neutrino interactions & BSM physics

NUMI DATA : RUN 5440 EVENT 2577. MARCH 15, 2016



# LArTPC in action

**Extremely detailed 3D images + calorimetry + PID:** unprecedented tool for neutrino interactions & BSM physics





# LArTPC in action

**Extremely detailed 3D images + calorimetry + PID:** unprecedented tool for neutrino interactions & BSM physics



# Multiple handles to e- $\gamma$ separation: topology



Quantified for the first time in a fully automated event reconstruction chain *PHYS. REV. D* 104, 052002 (2021)

**µBooNE** 







Inside the MicroBooNE LArTPC: 3 wire planes (8192 gold-coated wires)

32

Photomultipliers





### Liquid Argon Time Projection Chambers!





### Liquid Argon Time Projection Chambers!



Surface-based, 85 ton active volume liquid argon

One drift chamber.

Field cage cathode held at -70 kV UV laser calibration system

Start taking data Fall 2015

Collected the largest sample of v-Ar interactions to date from both the FNAL beams. 5 years of physics run: completed!





Neutrino beams @ MicroBooNE



48



### Ingredients for a successful on-beam v experiment

 $\rightarrow$ 



- 1. Know your neutrino flux
- 2. Know your detector  $\rightarrow$
- 3. Know how neutrinos interact  $\rightarrow$

MICROBOONE-NOTE-1031-PUB JINST 15, P03022 (2020) (and many more) Tuned interaction model + XS measurements



### Ingredients for a successful on-beam v experiment

 $\rightarrow$ 



- 1. Know your neutrino flux
- 2. Know your detector  $\rightarrow$
- 3. Know how neutrinos interact  $\rightarrow$

MICROBOONE-NOTE-1031-PUB JINST 15, P03022 (2020) (and many more) **Tuned interaction model + XS measurements** 



### The nucleus is a complex system...

Signal-Background Migration

The nucleon is not at rest! Fermi Motion must be modeled.

Strongly interacting nucleons → alteration of electroweak couplings (modeled w/RPA)

Interactions with correlated pair of nucleons:

- $\rightarrow$  Meson Exchange Current (MEC)
- $\rightarrow$  Short Range Correlations

#### **Final State Interactions**

 $\rightarrow$  re-interactions of the v products within the nuclear medium

Significant uncertainty in  $v_e/v_\mu$  CC cross section models due to limited experimental data in argon at low energy ~200MeV

Ρ

Z/W

Ρ



### The nucleus is a complex system...





### ... so we measure our own cross sections!

**High statistics v-Ar cross-section measurements** targeting many interaction kinematics and final states, using both beams: the BNB to test  $v_u$  and NuMI to test  $v_e$ 





### External Unbiased Event: a randomly sampled beam-off event



Data-Driven techniques to abate systematics

Simulated neutrino event from event generator





### External Unbiased Event: a randomly sampled beam-off event



**Overlay event** 

## Data-Driven techniques to abate systematics

Each simulated waveform from a PMT channel or a TPC wire is added to the signal from the correlated channel in the cosmic data.

Reliable representation of cosmic background & noise models: it's data!

104 cm



### **External Unbiased Event:** a randomly sampled beam-off event



**µBooNE** 

Data-Driven techniques to abate systematics

Detector systematics evaluated with a novel method to capture data/MC differences at the waveform level as a function of different kinematic variables.





# Talk Roadmap



The LArTPC technology & the MicroBooNE experiment

#### **MicroBooNE Recent Results**:

→ 3 complementary searches for a  $v_e$  excess → the photon search



### The core question: what's the MiniBooNE LEE?

### **The Electron Path**

Excess of  $v_e$  due oscillations through sterile neutrinos.

The LArTPC technology allows to probe many more final states compared to MiniBooNE.



### **The Photon Path**

Mismodeled background?

NC  $\pi^0$  rate & dirt backgrounds constrained in-situ, but... NC  $\Delta$  process never experimentally measured, just constrained by T2K and NOMAD: x3.18 higher XS can explain excess













**The Electron Path** 



### **The Photon Path**

- 1
- •
- :
- :
- : :
- •
- •



**The Electron Path** 

For our **first search**, we used an **empirical model of the excess**: cover a number of literatures explanations of the MiniBooNE observation. <u>MICROBOONE-NOTE-1043-PUB</u>

### **The Photon Path**





Excess/MeV 0.7 0.6 0.5 0.4 0.3 0.2 0.1 -0.1 200 300 500 700 1100 1000 ECCOF [MeV] 1) Take background subtracted excess of data events in MiniBooNE

### **The Photon Path**

Elena Gramellini, FNAL

**The Electron Path** 











## A common strategy for multiple analyses





3 distinct signal definitions & 3 event reconstruction paradigms



3 distinct signal definitions & 3 event reconstruction paradigms



- Use **Convolutional Neural Net** to label tracks and showers from input pixel image  $\rightarrow$  Pioneering technique in LAr!
- Targets high purity of CCQE signal selection:
  - the main interaction component at energy
- Constraint the selected events to be kinematically consistent with
- two-body scattering
  - $\rightarrow$  reduction in systematics from interaction modeling

**µBooNE** 

Elena Gramellini, FNAL



3 distinct signal definitions & 3 event reconstruction paradigms





Focus on measuring  $v_e$  topologies also observed by MiniBooNE: all events without visible pions.

1eNp is most sensitive to empirical model, while 1e0p mitigate uncertainties related to proton multiplicity, kinematics, and reconstruction.



3 distinct signal definitions & 3 event reconstruction paradigms

Use **novel tomographic image** reconstruction leveraging isochronous signals from the 3 wire planes to build 3D images.

Fully inclusive selection: **high purity and high efficiency** Least sensitive to the cross section model



### The Photon Path: Single Photon Search





### Pandora event reconstruction

 $\Delta \rightarrow N\gamma$  targeting  $1\gamma 1p$  and  $1\gamma 0p$  to maximize signal statistics NC  $\pi^0$  is main background

 $\rightarrow$  Topology: 2 $\gamma$ , but second shower can be difficult/impossible to reconstruct

 $\rightarrow$  In situ measurement used to constrain the background


### A common strategy for multiple analyses



73



### A common strategy for multiple analyses





Elena Gramellini, FNAL

v. 1e1p

#### A common strategy: use of BDTs



Elena Gramellini, FNAL

# 

19 kinematic variables (e.g. QE consistency) 4 detector variables (e.g. shower labeled pixel fraction)



**1γ1p:** 5 boosted decision trees to reject background

**µBooN** 

### A common strategy: a performance example







 $\rightarrow$  calibrate shower reconstruction

(e.g. reco  $\pi 0$  mass within 5% of 135 MeV/c<sup>2</sup>)





p,  $\pi$  tagging

 $\mu$  rejection

v-ID/cosmic rejection





#### Numerous sidebands used to:

- $\rightarrow$  test selections
- $\rightarrow$  test the interaction model: NuMI  $v_e$ 
  - all  $v_{e}$ -Ar cross section measurements to date
- $\rightarrow$  High intrinsic v relative to BNB
- → Selections not tuned on NuMI data: applied after frozen, before unblinding BNB data





e or  $\gamma$ 

ID



Elena Gramellini, FNAL

80

**µBooNE** 







82

### Progressive Unblinding strategy





**µBooN** 

#### The Electron Path: Results





#### The Photon Path: Results





### A common strategy: statistical interpretation

#### Two methods



#### Simple Hypothesis Test:

Probability of the data rejecting one hypothesis assuming the other is true, using a  $\Delta \chi^2$  formalism.

#### Signal Strength Comparisons:

Use Feldman-Cousins procedure to measure best fit signal strength:

 $v_{e}$ : assuming a flat scaling of the eLEE model

 $\gamma$ : assuming a flat scaling of NC  $\Delta \rightarrow N\gamma$ 

nominal GENIE expectation



#### The Photon Path: Simple Hypothesis Test

June24\_SignalBox\_Script2\_v1\_DATAPLOT\_LEE\_V\_SMCNP\_Chi





#### The Electron Path: Simple Hypothesis Test



88

**µBooNE** 

#### The Photon Path: Signal Strength

No evidence for an enhanced rate of single photons from NC  $\Delta \rightarrow N\gamma$  decay above nominal GENIE expectations x3.18

Scaling disfavoured at 94.8% C.L. > than 50 times better than the world's previous limit





#### The Electron Path: Signal Strength

Energy-dependent scaling of  $v_e$  beam content as in eLEE model is not favored



Elena Gramellini, FNAL

90

**µBooNE** 

### Summary of results



Investigated two hypotheses to see if the MiniBooNE excess originate from of  $v_o$  or NC  $\Delta \rightarrow N\gamma$ 

No evidence for excesses relative to prediction in either channel: 95% CL to  $3\sigma$ 





#### The Road Ahead



#### Topologies we can explore in LArTPC













Overlapping 
$$e^+e^-$$
Overlapping  $e^+e^-$ Highly asymmetric  $e^+e^-$ Highly asymmetric  $e^+e^ p \setminus$  $p \setminus$  $p \setminus$  $p \setminus$ 



## Topologies we can explore in LArTPC MicroBooNE's first series of LEE search results





#### More Stat & Sneak Peeks



Stat limited analyses: stay tuned for full dataset

#### Coming soon: more oscillations!

Search for a 3+1 Sterile Neutrino with the MicroBooNE experiment using Deep-Learning-based reconstruction

Search for a Sterile Neutrino in a 3+1 Framework using Wire-Cell Inclusive Charged-Current  $v_{p}$  Selection

 $\nu_{\mu}$  Disappearance in MicroBooNE using the DL LEE2 1  $\mu 1p$  CCQE Selection

Elena Gramellini, FNAL

**µBooN** 

#### Topologies we can explore in LArTPC





### Evolving theory landscape

First series of results (1/2 the MicroBooNE data set)

| Reco<br>topology<br>Models | , 1e0p         | 1e1p                        | 1eNp                    | 1eX              | e <sup>+</sup> e <sup>-</sup><br>+ nothing | e⁺e⁻X                     | 1γ0p             | 1 <i>ү</i> 1р    | 1γΧ              |
|----------------------------|----------------|-----------------------------|-------------------------|------------------|--------------------------------------------|---------------------------|------------------|------------------|------------------|
| eV Sterile v Osc           | ~              | ~                           | ~                       | ~                |                                            |                           |                  |                  |                  |
| Mixed Osc + Sterile $v$    | <b>1</b> [7]   | <b>V</b> [7]                | <b>/</b> [7]            | <b>V</b> [7]     |                                            |                           | <b>/</b> [7]     |                  |                  |
| Sterile v Decay            | [13,14]        | <b>V</b> <sub>[13,14]</sub> | [13.14]                 | <b>1</b> [13,14] |                                            |                           | [4,11,12,15]     | <b>1</b> [4]     | <b>1</b> [4]     |
| Dark Sector & Z' *         | <b>/</b> [2,3] |                             |                         |                  | [2,3]                                      | <b>/</b> <sub>[2,3]</sub> | <b>/</b> [1,2,3] | <b>/</b> [1,2,3] | <b>/</b> [1,2,3] |
| More complex higgs *       |                |                             |                         |                  | [10]                                       | [10]                      | [6,10]           | [6,10]           | [6,10]           |
| Axion-like particle *      |                |                             |                         |                  | [8]                                        |                           | <b>1</b> [8]     |                  |                  |
| Res matter effects         | <b>1</b> [5]   | <b>/</b> [5]                | <b>V</b> <sub>[5]</sub> | <b>/</b> [5]     |                                            |                           |                  |                  |                  |
| SM $\gamma$ production     |                |                             |                         |                  |                                            |                           | ~                | ~                | <b>~</b>         |

\* Requires heavy sterile/other new particles also



#### (Caution: not an exhaustive list!) Evolving theory landscape Decay of O(keV) Sterile Neutrinos to active neutrinos o [13] Dentler, Esteban, Kopp, Machado Phys. Rev. D 101, 115013 (2020) o [14] de Gouvêa, Peres, Prakash, Stenico JHEP 07 (2020) 141 New resonance matter effects Produces electrons o [5] Asaadi, Church, Guenette, Jones, Szelc, PRD 97, 075021 (2018) Mixed O(1eV) sterile oscillations and O(100 MeV) sterile decay o [7] Vergani, Kamp, Diaz, Arguelles, Conrad, Shaevitz, Uchida, arXiv:2105.06470 Decay of heavy sterile neutrinos produced in beam o [4] Gninenko, Phys.Rev.D83:015015,2011 o [12] Alvarez-Ruso, Saul-Sala, Phys. Rev. D 101, 075045 (2020) Produces photons o [15] Magill, Plestid, Pospelov, Tsai Phys. Rev. D 98, 115015 (2018) o [11] Fischer, Hernandez-Cabezudo, Schwetz, PRD 101, 075045 (2020) Decay of upscattered heavy sterile neutrinos or new scalars mediated by Z' or more complex higgs sectors o [1] Bertuzzo, Jana, Machado, Zukanovich Funchal, PRL 121, 241801 (2018) o [2] Abdullahi, Hostert, Pascoli, Phys.Lett.B 820 (2021) 136531 o [3] Ballett, Pascoli, Ross-Lonergan, PRD 99, 071701 (2019) o [10] Dutta, Ghosh, Li, PRD 102, 055017 (2020) Produces e<sup>+</sup> e<sup>-</sup> pairs o [6] Abdallah, Gandhi, Roy, Phys. Rev. D 104, 055028 (2021) Decay of axion-like particles o [8] Chang, Chen, Ho, Tseng, Phys. Rev. D 104, 015030 (2021) A model-independent approach to any new particle • [9] Brdar, Fischer, Smirnov, PRD 103, 075008 (2021)

98

uBoon

#### Evolving theory landscape Decay of O(keV) Sterile Neutrinos to active neutrinos o [13] Dentler, Esteban, Kopp, Machado Phys. Rev. D 101, 115013 (2020) o [14] de Gouvêa, Peres, Prakash, Stenico JHEP 07 (2020) 141 New resonance matter effects Produces electrons o [5] Asaadi, Church, Guenette, Jones, Szelc, PRD 97, 075021 (2018) Mixed O(1eV) sterile oscillations and O(100 MeV) sterile decay o [7] Vergani, Kamp, Diaz, Arguelles, Conrad, Shaevitz, Uchida, arXiv:2105.06470 Decay of heavy sterile neutrinos produced in beam o [4] Gninenko, Phys.Rev.D83:015015,2011 o [12] Alvarez-Ruso, Saul-Sala, Phys. Rev. D 101, 075045 (2020) Produces photons o [15] Magill, Plestid, Pospelov, Tsai Phys. Rev. D 98, 115015 (2018) o [11] Fischer, Hernandez-Cabezudo, Schwetz, PRD 101, 075045 (2020) Decay of upscattered heavy sterile neutrinos or new scalars mediated by Z' or more complex higgs sectors o [1] Bertuzzo, Jana, Machado, Zukanovich Funchal, PRL 121, 241801 (2018) o [2] Abdullahi, Hostert, Pascoli, Phys.Lett.B 820 (2021) 136531 o [3] Ballett, Pascoli, Ross-Lonergan, PRD 99, 071701 (2019) o [10] Dutta, Ghosh, Li, PRD 102, 055017 (2020) Produces e<sup>+</sup> e<sup>-</sup> pairs a lel Abdallah Candhi Pour Phys. Pour D 104, 055028 (2021) Searches for exclusive final state 0 104, 015030 (2021) topologies in LArTPCs allow to ew particle 5008 (2021) distinguish between models!

(Caution: not an exhaustive list!)

**uBoon** 

### Already started: H Portal $\rightarrow e^+e^-$ @ MicroBooNE



Search for e+e- decays from scalars coming from NuMI hadron absorber

 $10^{-2}$ reinterpretation ^ central value θ  $10^{-3}$ CHARM\* KOTO E949 LSND\* NA62  $10^{-4}$ 60 80 100 120 140 160 Scalar mass m<sub>s</sub> (MeV/c<sup>2</sup>) 20 40 180 200

Search for a Higgs Portal Scalar Decaying to Electron-Positron Pairs in the MicroBooNE Detector <u>Phys.Rev.Lett. 127 (2021) 15, 151803</u>



#### Already started: H Portal $\rightarrow e^+e^-$ @ MicroBooNE





Search for e+e- decays from scalars coming from NuMI hadron absorber

```
1 event observed \rightarrow 95% C.L. excludes KOTO central value
```

Search for a Higgs Portal Scalar Decaying to Electron-Positron Pairs in the MicroBooNE Detector <u>Phys.Rev.Lett. 127 (2021) 15, 151803</u>



#### SBN: definitive test of short baseline oscillation

Fermilab Short-Baseline Neutrino Program will soon add further to this picture → multiple detector analyses

Same neutrino flux & argon medium (same cross-sections!) → measurement is highly correlated = reduced systematics









#### Conclusions

We have completed our first search into the long-standing short-baseline neutrino puzzle:

our 5 complementary analyses found **no evidence for an excess** in the single electron and in the  $\Delta \rightarrow N\gamma$  single photon channels with respect to the intrinsic beam content predictions.

MicroBooNE has demonstrated the excellent power of LArTPCs as the tool for precision measurement: together with the SBN program, we'll continue to leverage it to probe more BSM scenarios.





### Upgrading the analysis

Analogous **signal definition** to the flux averaged analysis:  $v_e$  and  $\bar{v}_e$  w/ energy above 60 MeV and charged lepton energy > 120 MeV.

Better detector understanding: signal processing from all planes & improved calorimetry JINST 13, P07006 (2018), JINST 13, P07007 (2018)

Reduced systematic uncertainties via a data driven method to assess detector systematics from waveforms arXiv:2111.03556

Improved neutrino interaction model "theory-driven" CCQE & MEC tuned to T2K CC0 $\pi$  data arXiv:2110.14028

New approach to "modeling" cosmic background: overlay





### Upgrading the analysis

Analogous **signal definition** to the flux averaged analysis:  $v_e$  and  $\bar{v}_e$  w/ energy above 60 MeV and charged lepton energy > 120 MeV.

Better detector understanding: signal processing from all planes & improved calorimetry JINST 13, P07006 (2018), JINST 13, P07007 (2018)

Reduced systematic uncertainties via a data driven method to assess detector systematics from waveforms arXiv:2111.03556

Improved neutrino interaction model "theory-driven" CCQE & MEC tuned to T2K CC0 $\pi$  data arXiv:2110.14028

New approach to "modeling" cosmic background: overlay





### Evolving technology: mass, precision & information

The history of neutrino detectors shows how breakthroughs in instrumentation enable new discoveries. **What do we need to resolve the LEE puzzle?** 




## Evolving technology: mass, precision & information

The history of neutrino detectors shows how breakthroughs in instrumentation enable new discoveries. **What do we need to resolve the LEE puzzle?** 

Precise & Massive!

**µBooN** 



Elena Gramellini, FNAL



MicroBooNE

SBN Far Detector ICARUS SBN Near Detector SBND

## LArTPC: a tool for discovery

LAr as total absorption calorimeter:

- Dual detection mechanism:
  ionization and scintillation light
  → multiple information channels
- Abundant and cheap
  - $\rightarrow$  scalable detectors for
  - $\rightarrow$  high statistics  $\nu$  measurements

**TPC** as  $4\pi$  charged particle detector

- 3D reconstruction with fully active volume

## **Sophisticated tools for event reconstruction** are widely available.



X, time

