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Neutrinos are the most abundant massive 
particles in the universe… 
…and one of the least understood. 

Not surprising it took 
26 years from formulation to first evidence!

Neutrinos: puzzles of the Standard Model
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”for the discovery of neutrino oscillations, 
which shows that neutrinos have mass” 

Neutrino Oscillations: Massive Neutrinos are
a 1st Glance at Physics Beyond the Standard Model! 

2015

Precision measurements of 
3 flavor mass and mixing (~10%)

Many open questions:
Mass Hierarchy
Absolute Mass
CP Violation in ν sector
Nature of Neutrinos
Neutrinos and Cosmology

BSM physics in Neutrino Sector
New neutrinos
New forces
Exotic phenomena
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Neutrinos interact via the 
weak force as states of 

definite flavor

but they propagate through 
space/time as states of definite 

mass

ν1 ν2 ν3linear combinations
of each other

3-Flavors Neutrino Oscillations

PMNS mixing matrix

νe νμ ντ
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Neutrinos interact via the 
weak force as states of 

definite flavor

but they propagate through 
space/time as states of definite 

mass

3-Flavors Neutrino Oscillations

PMNS mixing matrix

Measuring the mixing 
parameters with high 
precision gives us new 

information on neutrinos!
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Neutrino Oscillations: A Simple 2 Flavors Example
Image Credit: S. Pascoli

Production Detection

Propagation(Some) neutrinos come 
from particle’s decay:

Flavor States! Quantum-Mechanic 
propagation:
Mass States!

They interact by 
exchanging a W/Z boson:

Flavor States!
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Neutrino Oscillations: A Simple 2 Flavors Example
Image Credit: S. Pascoli

Muon neutrino disappearance

 

Electron neutrino appearance
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Neutrino Oscillations: A Simple 2 Flavors Example

 

Amplitude of oscillation “large” 
→ easy to detect

Frequency of oscillation 
(set by Nature)

Baseline 
(set by us, given the 
Δm2 to explore)
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3-Flavors Neutrino Oscillations

 

Atmospheric Reactor Solar
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Escaping 3-flavor oscillations

θ12, θ13, θ23

Δm2, δm2

Nν

Precision era
( < 10% )

N Active: 3 ν
Sterile?

νΧ ν4

+ +.            .             .   .

.     .      .

The existence of a 4th, sterile 
neutrino would arise as a 
deviation from the predicted 
3-flavor oscillation pattern at a 
baseline corresponding to the 
appropriate Δm2.  

“PMNS+” matrix
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Observed in neutrino experiments in the last 20 years: 
Deficit of anti-νe detected from nuclear reactors (reactor anomaly).

Reactor

arXiv:1204.5379

Short-baseline ν anomalies
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Observed in neutrino experiments in the last 20 years: 
Deficit of anti-νe detected from nuclear reactors (reactor anomaly).
Deficit of νe from intense calibration sources in solar ν experiments  (gallium anomaly).

Reactor

arXiv:1204.5379

GALLEX/SAGE

Phys. Rev. C 73, 045805 (2006)

Flux refinement for Reactors: Phys.Letters B Volume 829, (2022) 10
BEST experiment on Gallium:  Phys.Rev.D 105 (2022) 5, L051703

Short-baseline ν anomalies
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Observed in neutrino experiments in the last 20 years: 
Deficit of anti-νe detected from nuclear reactors (reactor anomaly).
Deficit of νe from intense calibration sources in solar ν experiments  (gallium anomaly).
Excess of νe/anti-νe in νµ/anti-νµ beams at particle accelerators (LSND & MiniBooNE).

Phys. Rev. D 64 112007, 2001

Eν = 20 – 55 MeV 
Baseline L = 30m

LSND

Short-baseline ν anomalies
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Observed in neutrino experiments in the last 20 years: 
Deficit of anti-νe detected from nuclear reactors (reactor anomaly).
Deficit of νe from intense calibration sources in solar ν experiments  (gallium anomaly).
Excess of νe/anti-νe in νµ/anti-νµ beams at particle accelerators (LSND & MiniBooNE).

Phys. Rev. D 103, 052002 (2021)Phys. Rev. D 64 112007, 2001

LSND

MiniBooNE

Similar L/E: 
Eν = 800 MeV 
Baseline L = 540m

Short-baseline ν anomalies
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Phys. Rev. D 103, 052002 (2021)Phys. Rev. D 64 112007, 2001

Similar L/E: 
Eν = 800 MeV 
Baseline L = 540m LSND 

Signal

LSND

MiniBooNE

Short-baseline ν anomalies

Observed in neutrino experiments in the last 20 years: 
Deficit of anti-νe detected from nuclear reactors (reactor anomaly).
Deficit of νe from intense calibration sources in solar ν experiments  (gallium anomaly).
Excess of νe/anti-νe in νµ/anti-νµ beams at particle accelerators (LSND & MiniBooNE).
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Phys. Rev. D 103, 052002 (2021)Phys. Rev. D 64 112007, 2001

Similar L/E: 
Eν = 800 MeV 
Baseline L = 540m

LSND

MiniBooNE

Low 
Energy 
Excess

Short-baseline ν anomalies

Observed in neutrino experiments in the last 20 years: 
Deficit of anti-νe detected from nuclear reactors (reactor anomaly).
Deficit of νe from intense calibration sources in solar ν experiments  (gallium anomaly).
Excess of νe/anti-νe in νµ/anti-νµ beams at particle accelerators (LSND & MiniBooNE).
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Experiment Type Channel Significance

GALLEX/SAGE Source – e capture 𝜈𝑒 disappearance 2.8 σ

Reactors 𝛃 decay 𝜈̅𝑒 disappearance 3.0 σ

LSND DAR accelerator 𝜈̅𝜇 → 𝜈̅𝑒 3.8 σ

MiniBooNE SBL accelerator
𝜈𝜇 → 𝜈𝑒
𝜈̅𝜇 → 𝜈̅𝑒

4.5 σ

2.8 σ

Short-baseline ν anomalies

Observed in neutrino experiments in the last 20 years: 
Deficit of anti-νe detected from nuclear reactors (reactor anomaly).
Deficit of νe from intense calibration sources in solar ν experiments  (gallium anomaly).
Excess of νe/anti-νe in νµ/anti-νµ beams at particle accelerators (LSND & MiniBooNE).
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While independent explanations are not excluded, 
a unifying “vanilla” hypothesis exists: mixing of 
the standard neutrinos with a fourth, non–weakly 
interacting sterile species: motivates new 
experiments!

Disfavored by non-observation of νµ 
disappearance: motivates richer phenomenology!

Short-baseline ν anomalies

Observed in neutrino experiments in the last 20 years: 
Deficit of anti-νe detected from nuclear reactors (reactor anomaly).
Deficit of νe from intense calibration sources in solar ν experiments  (gallium anomaly).
Excess of νe/anti-νe in νµ/anti-νµ beams at particle accelerators (LSND & MiniBooNE).
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MiniBooNE is a mineral oil Cherenkov Detector: 
PID from the Cherenkov rings, no hadron information.

Phys. Rev. D 103, 052002 (2021)

MiniBooNE
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MiniBooNE is a mineral oil Cherenkov Detector: 
PID from the Cherenkov rings, no hadron information.

Phys. Rev. D 103, 052002 (2021)

Indistinguishable

MiniBooNE
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MiniBooNE is a mineral oil Cherenkov Detector: 
PID from the Cherenkov rings, no hadron information.

Phys. Rev. D 103, 052002 (2021)

Low Energy Excess could be 
“electron-like” (eLEE)
or “photon-like” (γLEE)

If photon-like (γLEE): could be a 
misunderstood background?

If electron-like (eLEE): 
νe appearance at an L/E not 
consistent with standard three 
neutrino oscillations 

→ a sterile neutrino?

MiniBooNE
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MiniBooNE is a mineral oil Cherenkov Detector: 
PID from the Cherenkov rings, no hadron information.

Phys. Rev. D 103, 052002 (2021)

Low Energy Excess could be 
“electron-like” (eLEE)
or “photon-like” (γLEE)

If photon-like (γLEE): could be a 
misunderstood background?

If electron-like (eLEE): 
νe appearance at an L/E not 
consistent with standard three 
neutrino oscillations 

→ a sterile neutrino?
A different technology on the 
same beamline can provide 

more insights on the LEE

MiniBooNE
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Booster Neutrino 
Beamline (BNB):

SAME FLUX!

MicroBooNE

MiniBooNE



Elena Gramellini, FNAL Probing MiniBooNE… with MicroBooNE!

MicroBooNE

MiniBooNE

Booster Neutrino 
Beamline (BNB):
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MicroBooNE

MiniBooNE

BNB

(93.6%)
(5.86%)
(0.52%)
(0.05%)

MICROBOONE-PUB-1031

Booster Neutrino 
Beamline (BNB):

SAME FLUX!

https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1031-PUB.pdf
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SIMILAR BASELINE
MicroBooNE: 480 m
MiniBooNE: 540 m

MicroBooNE

MiniBooNE
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SUPERIOR 
Electron-Photon 
Discrimination

MicroBooNE

MiniBooNE
MiniBooNE MicroBooNE
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A history of short baseline anomalies 

Talk Roadmap

MicroBooNE Recent Results:
→ 3 complementary searches for a νe excess
→ the photon search

The LArTPC technology &
the MicroBooNE experiment

32
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LArTPC*: a Crash Course
→ A block of Ar

*LArTPC for ν pioneered in Italy by the ICARUS
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LArTPC: a Crash Course

Cathode Anode

→ A block of Ar

→ Sandwich it in a parallel planes capacitor:
- Cathode at negative HV
- Segmented anode to see the charge signal
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LArTPC: a Crash Course
→ A block of Ar

→ Sandwich it in a parallel planes capacitor:
- Cathode at negative HV
- Segmented anode to see the charge signal

→ Create an electric field as uniform and 
     as constant as possible

Cathode Anode
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LArTPC: a Crash Course
→ A block of Ar

→ Sandwich it in a parallel planes capacitor:
- Cathode at negative HV
- Segmented anode to see the charge signal

→ Create an electric field as uniform and 
     as constant as possible

→ Equip with a light collection system 
    (usually mounted behind the anode)

Cathode Anode
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LArTPC: Working Principles

1. Energy loss by charged particles:
Ionization and
Excitation of Ar

2. Prompt scintillation light emission by Ar2
+ starts 

clock: the light arrives to the light collection system 
in matter of ns

ν
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LArTPC: Working Principles

1. Energy loss by charged particles:
Ionization and
Excitation of Ar

2. Prompt scintillation light emission by Ar2
+ starts 

clock: the light arrives to the light collection system 
in matter of ns

3. Electrons drift to anode: the charge arrives to the 
anode in matter of ms depending on detector size.

(Ar+ ions drift to cathode)

4. Moving electrons induce currents on wires

5. Tracks are reconstructed from wire signals
and matched to recover a 3D images
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LArTPC in action
Extremely detailed 3D images + calorimetry + PID: 

unprecedented tool for neutrino interactions & BSM physics
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νe

LArTPC in action
Extremely detailed 3D images + calorimetry + PID: 

unprecedented tool for neutrino interactions & BSM physics
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νe

~3 mm
 resolution

Electron Candidate
Low Proton Candidate
reco threshold (tens of MeV)

LArTPC in action
Extremely detailed 3D images + calorimetry + PID: 

unprecedented tool for neutrino interactions & BSM physics

o(100) keV
hit threshold
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νe

~3 mm
 resolution

Electron Candidate

PHYS. REV. D 104, 
052002 (2021)

Low Proton Candidate
reco threshold (tens of MeV)

LArTPC in action
Extremely detailed 3D images + calorimetry + PID: 

unprecedented tool for neutrino interactions & BSM physics

o(100) keV
hit threshold

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.104.052002
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.104.052002
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Gap

Electron Candidate Photon Candidate

Multiple handles to e-γ separation: topology

Quantified for the first time in a fully automated event reconstruction chain 
 PHYS. REV. D 104, 052002 (2021)

44

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.104.052002
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Inside the MicroBooNE 
LArTPC: 3 wire planes 
(8192 gold-coated wires) 

73 
Cosmic Ray 

Tagger Modules

32 
Photomultipliers

The 
MicroBooNE 
detector
at a 
glance

45
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Liquid Argon Time Projection Chambers!
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Liquid Argon Time Projection Chambers!

Surface-based, 85 ton active 
volume liquid argon 

One drift chamber. 

Field cage cathode held at -70 kV 
UV laser calibration system 

Start taking data Fall 2015

Collected the largest sample of 
ν-Ar interactions to date from 
both the FNAL beams. 
5 years of physics run: 
completed! 
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Neutrinos at the Main 

Injector (NuMI) Beamline

Booster Neutrino 
Beamline (BNB)

Neutrino 
beams 

@ 
MicroBooNE

48
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Neutrinos at the Main 

Injector (NuMI) Beamline

Booster Neutrino 
Beamline (BNB)

BNB

(93.6%)
(5.86%)
(0.52%)
(0.05%)

MICROBOONE-PUB-1031

https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1031-PUB.pdf
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Ingredients for a successful on-beam ν experiment 

1. Know your neutrino flux         →        MICROBOONE-NOTE-1031-PUB
2. Know your detector                 →         JINST 15, P03022 (2020) (and many more)
3. Know how neutrinos interact →        Tuned interaction model + XS measurements

http://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1031-PUB.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/15/03/P03022
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Ingredients for a successful on-beam ν experiment 

1. Know your neutrino flux         →        MICROBOONE-NOTE-1031-PUB
2. Know your detector                 →         JINST 15, P03022 (2020) (and many more)
3. Know how neutrinos interact →        Tuned interaction model + XS measurements

http://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1031-PUB.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/15/03/P03022
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The nucleon is not at rest!
Fermi Motion must be modeled.

Strongly interacting nucleons 
→ alteration of  electroweak
     couplings (modeled w/RPA) 

Interactions with correlated pair of nucleons: 
 → Meson Exchange Current (MEC) 
 → Short Range Correlations 

Final State Interactions
→ re-interactions of the ν products
     within the nuclear medium 

The nucleus is a complex system…
Si

gn
al

-B
ac

kg
ro

un
d 

M
ig

ra
tio

n

Significant uncertainty in νe/νµ CC cross section 
models due to limited experimental data in 
argon at low energy ~200MeV
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Improved neutrino interaction model arXiv:2110.14028
“Theory-driven” CCQE & MEC tuned to T2K CC0π data

More than 50 parameters are varied to assess interaction 
uncertainties.

https://arxiv.org/abs/2110.14028
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… so we measure our own cross sections!

High statistics v-Ar cross-section measurements targeting many interaction kinematics and final 
states, using both beams: the BNB to test νµ and NuMI to test νe

Flux Averaged 
Inclusive νe+νeBar 

Phys. Rev. D.104.052002

Inclusive νe + νeBar CC 
differential 

in energy and angle.
Phys. Rev. D 105, L051102 

Energy dependent 
νµCC inclusive 

 Phys.Rev.Lett. 128 (2022) 15

νµCC π0 production 
Phys. Rev. D99, 091102(R) (2019)

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.104.052002
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.091102
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Data-Driven
techniques to 

abate 
systematics

External Unbiased Event: 
a randomly sampled beam-off event

Simulated neutrino event 
from event generator 

55
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Overlay event 

External Unbiased Event: 
a randomly sampled beam-off event Data-Driven

techniques to 
abate 

systematics
Each simulated 

waveform from a PMT 
channel or a TPC wire is 
added to the signal from 
the correlated channel in 

the cosmic data.

Reliable representation 
of cosmic background 

& noise models:
it’s data!

56
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Overlay event 

External Unbiased Event: 
a randomly sampled beam-off event Data-Driven

techniques to 
abate 

systematics

Detector systematics 
evaluated with  a 
novel method to 
capture data/MC 
differences at the 
waveform level as a 
function of different 
kinematic variables.

57



Elena Gramellini, FNALElena Gramellini

Talk Roadmap

MicroBooNE Recent Results:
→ 3 complementary searches for a νe excess
→ the photon search

A history of short baseline anomalies 

The LArTPC technology &
the MicroBooNE experiment

58



Elena Gramellini, FNAL 59

The Electron Path The Photon Path

The core question: what’s the MiniBooNE LEE?

Excess of νe due 
oscillations 
through sterile 
neutrinos. 

The LArTPC 
technology allows 
to probe many 
more final states 
compared to 
MiniBooNE.

Mismodeled background? 

NC π0 rate & dirt 
backgrounds constrained 

in-situ, but… 
NC Δ process never 

experimentally measured, 
just constrained by T2K 

and NOMAD: x3.18 higher 
XS can explain excess
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The Electron Path The Photon Path

The core question: what’s the MiniBooNE LEE?
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1eNp candidate data event

e
-

p

p
1eX candidate data 
event

e
-

1γ0p candidate data 
event

γ

61

The Electron Path The Photon Path

1e1p candidate data event

p

e
-

1γ1p candidate data 
event

γ

p

1e0p candidate data event

e
-

What would the LEE look like in μB?
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The Electron Path The Photon Path

Signal Model: how should we model it?
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The Electron Path The Photon PathFor our first search, we used an 
empirical model of the excess: 
cover a number of literatures 

explanations of the MiniBooNE 
observation. 

MICROBOONE-NOTE-1043-PUB

Signal Model: how should we model it?

https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1043-PUB.pdf
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The Electron Path The Photon Path

Signal Model: how should we model it?

1) Take background 
subtracted excess of data 

events in MiniBooNE
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The Electron Path The Photon Path

2) Assume 
excess is 
intrinsic νe 
& unfold to 
true energy

2) Assume 
excess is 
Δ→ Νγ

& unfold to 
true energy

Signal Model: how should we model it?
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The Electron Path The Photon Path

3) Test MicroBooNE 
analyses against this 

benchmark signal

Signal Model: how should we model it?
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ν-ID/cosmic rejection

e or γ 
ID

p, π tagging
µ rejection

Event selection + 
sidebands

Constraint of 
systematics

Results & Statistical 
Interpretation

A common strategy for multiple analyses
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e
-

p

p

68

3 distinct signal definitions & 3 event reconstruction paradigms

CC-QE Like InclusivePionless

1e0p candidate 

e
-

1eNp candidate 

The Electron Path: 3 complementary analyses

Deep Learning WireCellPandora
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3 distinct signal definitions & 3 event reconstruction paradigms

CC-QE Like

The Electron Path: 3 complementary analyses

Deep Learning

Use Convolutional Neural Net to label tracks and showers from 
input pixel image → Pioneering technique in LAr!

Targets high purity of CCQE signal selection: 
the main interaction component at energy 

Constraint the selected events to be kinematically consistent with 
two-body scattering

→ reduction in systematics from interaction modeling 
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Use pattern recognition in 2D 
to build 3D reconstruction of 
interaction, 
leverage hit-based 
calorimetry.

e
-

p

p

70

3 distinct signal definitions & 3 event reconstruction paradigms

Pionless

1e0p candidate 

e
-

1eNp candidate 

The Electron Path: 3 complementary analyses

Pandora

Focus on measuring νe topologies 
also observed by MiniBooNE: 
all events without visible pions.

1eNp is most sensitive to empirical 
model, while 1e0p mitigate 
uncertainties related to proton 
multiplicity, kinematics, and 
reconstruction. 
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3 distinct signal definitions & 3 event reconstruction paradigms

Inclusive

The Electron Path: 3 complementary analyses

WireCell

Use novel tomographic image reconstruction leveraging 
isochronous signals from the 3 wire planes to build 3D images.

Fully inclusive selection: high purity and high efficiency
Least sensitive to the cross section model
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Pandora event reconstruction
Δ→ Νγ targeting 1γ1p and 1γ0p to maximize signal statistics
NC π0 is main background 

→ Topology: 2γ, but second shower can be difficult/impossible to reconstruct 
→ In situ measurement used to constrain the background

The Photon Path: Single Photon Search



Elena Gramellini, FNAL 73

ν-ID/cosmic rejection

e or γ 
ID

p, π tagging
µ rejection

Event selection + 
sidebands

Constraint of 
systematics

Results & Statistical 
Interpretation

A common strategy for multiple analyses

MicroBooNE is a surface detector: 
→ Use light patterns in coincidence 

              with the beam trigger to ID neutrinos. 
→ 97% of triggered events contain 
     only cosmics
→ Events typically contain ν + ο(20) cosmic µ
→ Charge + PMT flashes match is used to

              isolate neutrino activity in active volume

Cosmic rejection ~ 99.7%

JINST 16, P06043 (2021)

http://iopscience.iop.org/article/10.1088/1748-0221/13/07/P07006
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e or γ 
ID

p, π tagging
µ rejection

Event selection + 
sidebands

Constraint of 
systematics

Results & Statistical 
Interpretation

A common strategy for multiple analyses

3-planes calorimetry based PID 
Hadrons/µ: novel technique for 
likelihood based PID 
(bragg peak ID)
e/γ: shower dE/dx

ν-ID/cosmic rejection
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e or γ 
ID

p, π tagging
µ rejection

Event selection + 
sidebands

Constraint of 
systematics

Results & Statistical 
Interpretation

A common strategy for multiple analyses
Multi Particle IDentification: Image based 
classification particle ID score

ν-ID/cosmic rejection
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A common strategy: use of BDTs 

Event selection + 
sidebands

Constraint of 
systematics

Statistical Interpretation

e or γ 
ID

p, π tagging
µ rejection

Constraint of 
systematics

Results & Statistical 
Interpretation

ν-ID/cosmic rejection

2 BDTs 16 detector variables

1e1p:
19 kinematic variables 
(e.g. QE consistency) 
4 detector variables 
(e.g. shower labeled 
pixel fraction)

1γ1p:
5 boosted decision trees 
to reject background
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A common strategy: a performance example

Event selection + 
sidebands

Constraint of 
systematics

Statistical Interpretation

e or γ 
ID

p, π tagging
µ rejection

Constraint of 
systematics

Results & Statistical 
Interpretation

ν-ID/cosmic rejection

Reject over 99.7% of background events from cosmic muons or π0

High purity νe selection
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Numerous sidebands used to:
→ calibrate shower reconstruction 

                    (e.g. reco π0 mass within 5% of 135 MeV/c2) 
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A common strategy: use of sidebands

Event selection + 
sidebands

Constraint of 
systematics

Statistical Interpretation

e or γ 
ID

p, π tagging
µ rejection

Constraint of 
systematics

Results & Statistical 
Interpretation

ν-ID/cosmic rejection
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Numerous sidebands used to:
→ test selections
→ test the interaction model: NuMI νe

                 all νe-Ar cross section measurements to date
→ High intrinsic νe relative to BNB 
→ Selections not tuned on NuMI data: 

                     applied after frozen, before unblinding BNB data
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A common strategy: use of sidebands

Event selection + 
sidebands

Constraint of 
systematics

Statistical Interpretation

e or γ 
ID

p, π tagging
µ rejection

Constraint of 
systematics

Results & Statistical 
Interpretation

ν-ID/cosmic rejection
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Numerous sidebands used to:
→ Constrain systematics with νµ selections: 

Flux: νe and νµ  same beamline, shared parents
Cross section: Both interact in argon

80

A common strategy: use of sidebands

Event selection + 
sidebands

Constraint of 
systematics

Statistical Interpretation

e or γ 
ID

p, π tagging
µ rejection

Constraint of 
systematics

Results & Statistical 
Interpretation

ν-ID/cosmic rejection
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Numerous sidebands used to:
→ Constrain systematics with νµ selections: 

Flux: νe and νµ  same beamline, shared parents
Cross section: Both interact in argon
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A common strategy: use of sidebands

Event selection + 
sidebands

Constraint of 
systematics

Statistical Interpretation

e or γ 
ID

p, π tagging
µ rejection

Constraint of 
systematics

Results & Statistical 
Interpretation

ν-ID/cosmic rejection

7-channel-fit to constrain 
systematics using 

combination of νe and  νµ 
channels
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Numerous sidebands used to:
→ Constrain π0
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A common strategy: use of sidebands

Event selection + 
sidebands

Constraint of 
systematics

Statistical Interpretation

e or γ 
ID

p, π tagging
µ rejection

Constraint of 
systematics

Results & Statistical 
Interpretation

ν-ID/cosmic rejection

High statistics π0 
samples:  constrain the π0 

backgrounds in situ for 
Δ→Nγ 

validate shower 
reconstruction and 

energy measurement
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Progressive Unblinding strategy

Event selection + 
sidebands

Constraint of 
systematics

Statistical Interpretation

e or γ 
ID

p, π tagging
µ rejection

Constraint of 
systematics

Results & Statistical 
Interpretation

ν-ID/cosmic rejection

Data in non-signal region used to validate analysis strategy 
and modeling. 
Selection are frozen before looking at sideband data. 
Progressive unblinding: the energy threshold is lowered 
gradually towards full unblinding, sidebands 
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The Electron Path: Results
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The Photon Path: Results
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A common strategy: statistical interpretation

Event selection + 
sidebands

Constraint of 
systematics

Statistical Interpretation

e or γ 
ID

p, π tagging
µ rejection

Constraint of 
systematics

Results & Statistical 
Interpretation

ν-ID/cosmic rejection

Two methods

Simple Hypothesis Test:
Probability of the data rejecting one hypothesis 
assuming the other is true, using a Δχ2 formalism.

Signal Strength Comparisons:
Use Feldman-Cousins procedure to measure

          best fit signal strength:
 νe: assuming a flat scaling of the eLEE model
 γ:  assuming a flat scaling of NC Δ→Nγ

                                              nominal GENIE expectation
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The Photon Path:  Simple Hypothesis Test

H0: nominal GENIE prediction
H1: γLEE model

Data shows 
no preference 
for the excess hypothesis 
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H0: νe intrinsic model
H1: νe intrinsic + eLEE

Data shows 
no preference 
for the excess hypothesis 
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The Electron Path: Simple Hypothesis Test
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The Photon Path: Signal Strength

No evidence for an enhanced rate 
of single photons from 
NC Δ→Nγ decay above nominal 
GENIE expectations x3.18 

Scaling disfavoured at 94.8% C.L.
> than 50 times better than the 
world’s previous limit 
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The Electron Path: Signal Strength

Energy-dependent scaling of 
νe beam content as in eLEE 
model is not favored
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Summary of results

Investigated two hypotheses to see if the MiniBooNE excess originate from of νe or NC Δ → Νγ

No evidence for excesses relative to prediction in either channel: 95% CL to 3σ
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The Road Ahead
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Topologies we can explore in LArTPC

p

e-

p
p

p

p p

Overlapping e+e- Highly asymmetric e+e- Highly asymmetric e+e-
Overlapping e+e-

γ γ

X

e- e- e-
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Topologies we can explore in LArTPC

p

e-

p
p

p

p p

Overlapping e+e- Highly asymmetric e+e- Highly asymmetric e+e-
Overlapping e+e-

γ γ

X

e- e- e-

MicroBooNE’s first series of LEE search results
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More Stat & Sneak Peeks 

Coming soon: more oscillations!
Search for a 3+1 Sterile Neutrino with the 
MicroBooNE experiment using 
Deep-Learning-based reconstruction  

Search for a Sterile Neutrino in a 3+1 
Framework using Wire-Cell Inclusive 
Charged-Current νe Selection

νµ Disappearance in MicroBooNE using the 
DL LEE2 1µ1p CCQE Selection

Data used 
for first 
results

x2 statistics 
on tape

Stat limited 
analyses: stay 
tuned for full 

dataset 
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Topologies we can explore in LArTPC

p

e-

p
p

p

p p

Overlapping e+e- Highly asymmetric e+e- Highly asymmetric e+e-
Overlapping e+e-

γ γ

X

e- e- e-

Additional analyses  
under development
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Evolving theory landscape

* Requires heavy sterile/other new particles also
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Evolving theory landscape
Decay of O(keV) Sterile Neutrinos to active neutrinos 

○ [13] Dentler, Esteban, Kopp, Machado Phys. Rev. D 101, 115013 (2020) 
○ [14] de Gouvêa, Peres, Prakash, Stenico JHEP 07 (2020) 141 

New resonance matter effects 
○ [5] Asaadi, Church, Guenette, Jones, Szelc, PRD 97, 075021 (2018) 

Mixed O(1eV) sterile oscillations and O(100 MeV) sterile decay 
○ [7]Vergani, Kamp, Diaz, Arguelles, Conrad, Shaevitz, Uchida, arXiv:2105.06470 

Decay of heavy sterile neutrinos produced in beam 
○ [4] Gninenko, Phys.Rev.D83:015015,2011 
○ [12] Alvarez-Ruso, Saul-Sala, Phys. Rev. D 101, 075045 (2020) 
○ [15] Magill, Plestid, Pospelov, Tsai Phys. Rev. D 98, 115015 (2018) 
○ [11] Fischer, Hernandez-Cabezudo, Schwetz, PRD 101, 075045 (2020) 

Decay of upscattered heavy sterile neutrinos 
or new scalars mediated by Z’ or more complex higgs sectors 

○ [1] Bertuzzo, Jana, Machado, Zukanovich Funchal, PRL 121, 241801 (2018) 
○ [2] Abdullahi, Hostert, Pascoli, Phys.Lett.B 820 (2021) 136531 
○ [3] Ballett, Pascoli, Ross-Lonergan, PRD 99, 071701 (2019) 
○ [10] Dutta, Ghosh, Li, PRD 102, 055017 (2020) 
○ [6] Abdallah, Gandhi, Roy,Phys. Rev. D 104, 055028 (2021) 

Decay of axion-like particles 
○ [8] Chang, Chen, Ho, Tseng, Phys. Rev. D 104, 015030 (2021) 

A model-independent approach to any new particle 
○ [9] Brdar, Fischer, Smirnov, PRD 103, 075008 (2021)

Produces electrons

Produces photons

Produces e+ e-  pairs

(Caution: not an exhaustive list!)
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Decay of upscattered heavy sterile neutrinos 
or new scalars mediated by Z’ or more complex higgs sectors 

○ [1] Bertuzzo, Jana, Machado, Zukanovich Funchal, PRL 121, 241801 (2018) 
○ [2] Abdullahi, Hostert, Pascoli, Phys.Lett.B 820 (2021) 136531 
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○ [10] Dutta, Ghosh, Li, PRD 102, 055017 (2020) 
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Decay of axion-like particles 
○ [8] Chang, Chen, Ho, Tseng, Phys. Rev. D 104, 015030 (2021) 

A model-independent approach to any new particle 
○ [9] Brdar, Fischer, Smirnov, PRD 103, 075008 (2021)

Produces electrons

Produces photons

Produces e+ e-  pairs

Searches for exclusive final state 
topologies in LArTPCs allow to 

distinguish between models!

(Caution: not an exhaustive list!)
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Already started: H Portal → e+e- @ MicroBooNE 

Search for a Higgs Portal Scalar 
Decaying to Electron-Positron Pairs in 

the MicroBooNE Detector
Phys.Rev.Lett. 127 (2021) 15, 151803

Search for e+e- decays from scalars coming from NuMI 
hadron absorber 

https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=find%20eprint%202106.00568
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Already started: H Portal → e+e- @ MicroBooNE 

Search for a Higgs Portal Scalar 
Decaying to Electron-Positron Pairs in 

the MicroBooNE Detector
Phys.Rev.Lett. 127 (2021) 15, 151803

Search for e+e- decays from scalars coming from NuMI 
hadron absorber 

1 event observed → 95% C.L. excludes KOTO central 
value

https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=find%20eprint%202106.00568
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SBN: definitive test of short baseline oscillation

Fermilab Short-Baseline Neutrino Program will soon add further to this picture 
→ multiple detector analyses

Same neutrino flux & argon medium (same cross-sections!) 
→  measurement is highly correlated = reduced systematics
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Event display of a 
NuMI 𝜈

e
 interaction candidate

SBND:
LAr filling starting early 2023

MicroBooNE: 
done with datataking

ICARUS: 
started taking ν data in 2021

ICARUS

SBND 
TPC
Building
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νe Conclusions

We have completed our first search into the long-standing 
short-baseline neutrino puzzle:

our 5 complementary analyses found 
     no evidence for an excess 
          in the single electron 
          and in the Δ→Nγ single photon channels 
          with respect to the intrinsic beam content predictions.

MicroBooNE has demonstrated the excellent power of 
LArTPCs as the tool for precision measurement: 

together with the SBN program, 
        we’ll continue to leverage it to probe more BSM scenarios.
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Thanks!
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Upgrading the analysis 

Analogous  signal definition to the flux averaged analysis: νe and νe w/ energy above 60 MeV and 
charged lepton energy > 120 MeV.

Better detector understanding: signal processing 
from all planes & improved calorimetry
JINST 13, P07006 (2018), JINST 13, P07007 (2018)

Reduced systematic uncertainties via a data driven 
method to assess detector systematics from waveforms
arXiv:2111.03556 

Improved neutrino interaction model “theory-driven”
CCQE & MEC tuned to T2K CC0π data arXiv:2110.14028

New approach to “modeling” cosmic background: overlay

http://iopscience.iop.org/article/10.1088/1748-0221/13/07/P07006
http://iopscience.iop.org/article/10.1088/1748-0221/13/07/P07007
https://arxiv.org/abs/2111.03556
https://arxiv.org/abs/2110.14028
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More Precise Information & Higher Statistics

Precise

Bubble Chamber

Cherenkov

108

Evolving technology: mass, precision & information
The history of neutrino detectors shows 
how breakthroughs in instrumentation enable new discoveries. 
What do we need to resolve the LEE puzzle?

Massive
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More Precise Information & Higher Statistics

Precise

Massive

Precise & Massive!

LArTPCs

Bubble Chamber

Cherenkov
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The history of neutrino detectors shows 
how breakthroughs in instrumentation enable new discoveries. 
What do we need to resolve the LEE puzzle?

Evolving technology: mass, precision & information
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MicroBooNE is the 1st Liquid Argon Time Projection Chamber 
of the Short Baseline Neutrino program @ FNAL. 



Elena Gramellini, FNAL 111

µ

e

e
e

e
e

Cathode Induction
Induction

Collection

X, time

Y

Z
E

LAr as total absorption calorimeter:
    - Dual detection mechanism: 
      ionization and scintillation light

 → multiple information channels

    - Abundant and cheap 
→ scalable detectors for
→ high statistics ν measurements

 

TPC as 4𝜋 charged particle detector
    -  3D reconstruction with fully active volume

Sophisticated tools for event reconstruction are 
widely available. 

Light
Collection

LArTPC: a tool for discovery


