

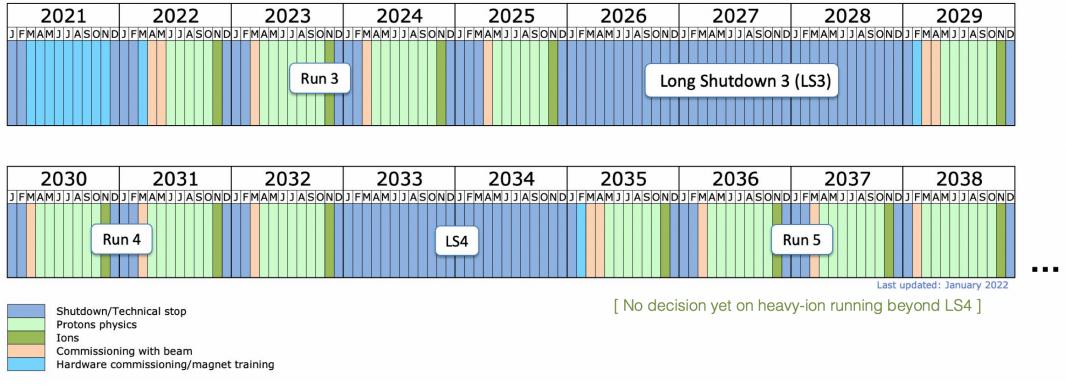
Istituto Nazionale di Fisica Nucleare

Highlights da ATLAS

Chiara Arcangeletti on behalf of the ATLAS-LNF Team

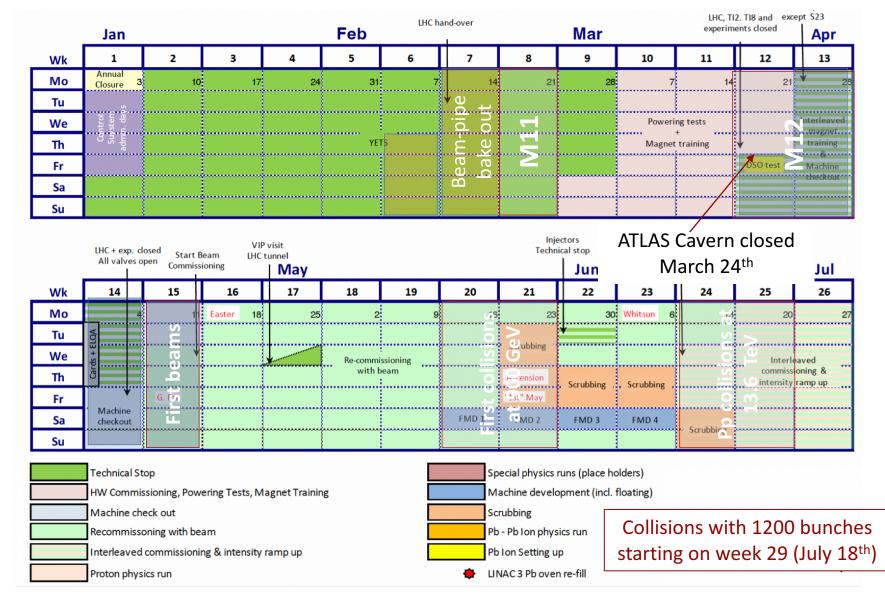
Riunione Gruppo 1 LNF, 10 Marzo 2022

Introduction


• Highlights from meeting CSN1 on February 2022

- Inputs from:
 - ATLAS: Partenza Run 3 (Paolo lengo)
 - ATLAS: Aggiornamento Fase 2 (Paolo Morettini)
- Overview of all ATLAS Activity
 - LUCID
 - TDAQ
 - Pixel
 - LAr and TileCal
 - Muons
- Focus on LNF Activity
 - New Small Wheel
 - Phase II Upgrade:
 - ITk
 - Muon Phase II

Schedule - LHC


CERN directors confirmed LS3 & Run-4 schedule update

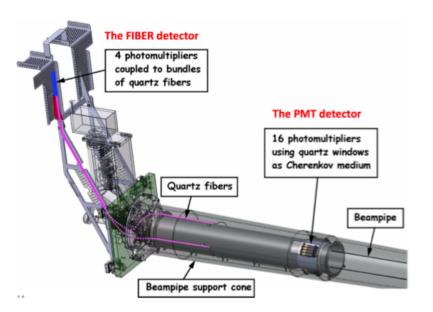
- Longer term of Run3 \rightarrow Physics from June 2022 to Nov 2025
- Possible to achieve 100 fb⁻¹/year if machine succeeds to inject 1.8x10¹¹ protons/bunch (baseline 1.4x10¹¹ protons/bunch \rightarrow ~85 fb⁻¹/year)

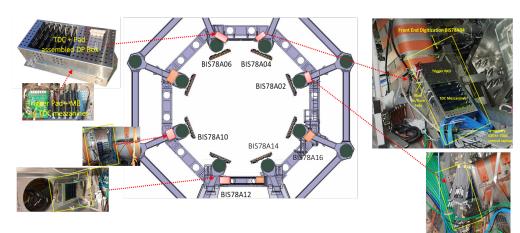
ATLAS: from LS2 to Run3

- 10 Milestone weeks held in 2021
 - Show that all systems can run at high rate in ATLAS
 - Re-integrate all legacy systems, integrate Phase-I ones
- Beam splashes and Pilot beam run in Oct. 2021
 - Interaction with LHC restored
 - Full shift crew in ACR
 - Expertise before Run 3 start up rebuilt
- Work on-going and plans:
 - Beam-pipe bake-out started on 10th Feb.
 - Magnets on track to rump up to nominal current
 - Plan to take Cosmic run with toroid off for Muon Barrel alignment March 25th – April 13th

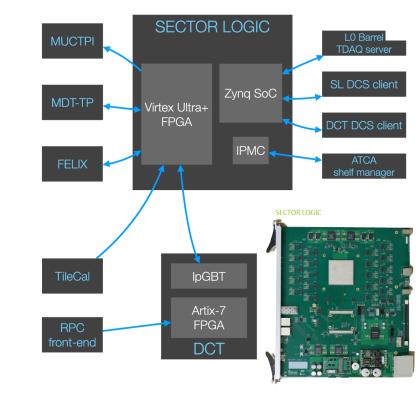
LUCID

Run 3....


- LUCID refurbished with new PMT
 - All tested and working
- FIBER detector installed
- Status and schedule
 - LUCID connected on both sides. All connection verified


...Phase II

- Initial design report completed and approved
- Study of the prototype for Phase II during Run 3
- Looking for more person power



TDAQ

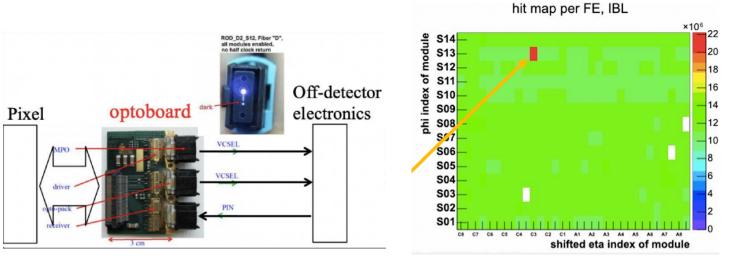
Run 3....

- Operations: dataflow updates already validated in 2021
 - Hardware replacement: several on-going, aim to be completed in few weeks
 - Software and readout upgrades completed
 - Two TDAQ technical runs before beginning of operations: TR21 (7-11 February successfully completed) and TR22 (7-11 March)
- Muon-TDAQ
 - MDT and RPC: Basic DAQ software ready
 - TDAQ equipment (PAD+TDC) for all the 8 BIS78 sectors is installed and connected \rightarrow aim to join M12
 - New SL2MUCTPI Interface boards
 - Completion of commissioning and calibration in 2022
 - Few experts, involvement and training of young colleagues is difficult
 - L1 Muon Barrel legacy system
 - OK during Run2, needs to be verified for Run3: ageing limitations and new calibrations needed

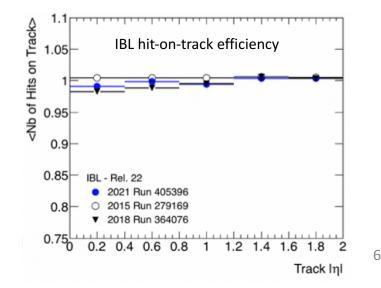
...Phase II

- New DCT board and SL
 - Prototype produced in 2021
 - 2021-2022: test, firmware, radiation hardness certification

Pixel


Run 3....

- Main LS2 activity: optoboard reparation
- Pixel during Pilot Beam Run
 - Hit-on-track efficiency measured (comparable to Run2)
- Improved offline software ready
- DQ Monitoring working
- DCS in good shape


Longevity concerns for extended Run3

- IBL (installed during LS1) not a concern (x5 more rad-hard than 'old' pixel system)
- Radiation damage: B-layer mostly concerned
 - With the extension of Run3, the B-layer will hit the fluence spec limit (currently at 50%)
 → Possible reduction of the hit-on-track efficiency
 - The Pixel group is constantly monitoring the effects of radiation damage with cosmics during LS2 and has developed mitigation strategies (HV and threshold tuning)

...Phase II →new **InnerTracker ITk**

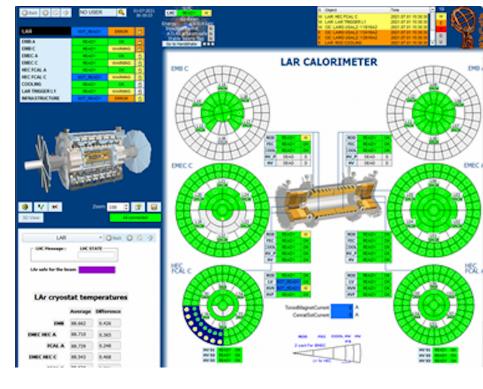
1-2 new noisy pixel modules identified during pilot run

Calorimeter: LAr and TileCal

Run 3 LAr....

- Installation and re-cabling of the system completed in August 2021
 - Some hardware interventions (board/fiber replacement, cooling maintenance,...)
- Large commissioning/recommissining activities in the past months
 - All front-end readout boards modified
 - New trigger needs to be commissioned
 - Legacy trigger needs to be recommissioned
- The system was successfully operated during 2021 Milestone Weeks and with pilot beam

...Phase II LAr

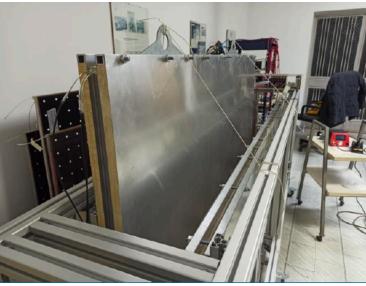

- New power system for the Front-End electronics
- Working on Slice Test Board mezzanines for FEB2

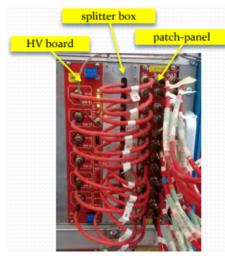
Run 3 TileCal...

• Maintenance and consolidation work mainly on cooling and calibration with Cs source

...Phase II TileCal

- Italian contribution in:
 - Test the new PMT that will replace 10% of the current → PRR in November 2021: success!
 - New laser calibration system

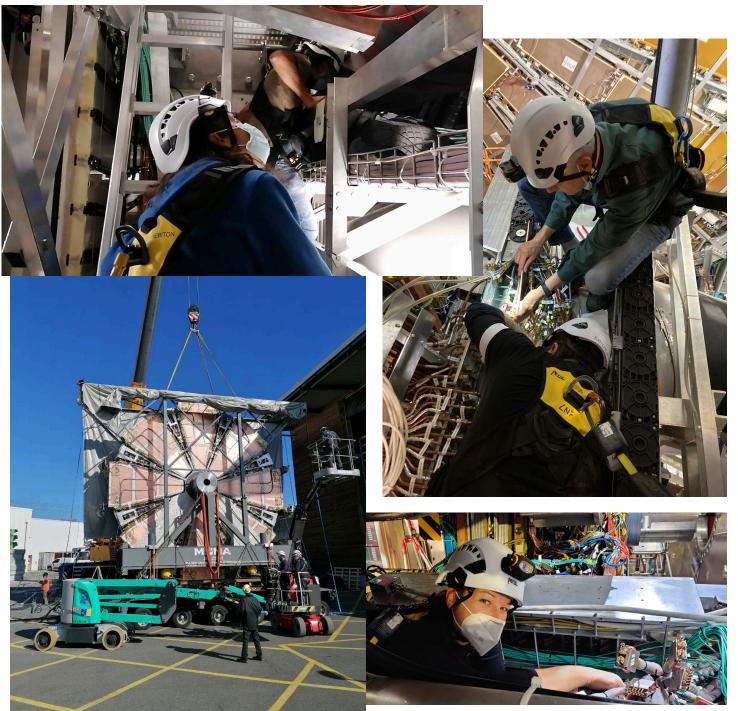

Muons


Run 3...

- Pilot beam run in October: most of MDT and RPC chambers ON (final gas mixture and full HV), RPC sending triggers consistent with collisions and cosmics
- Ouite intense last months of LS2 to finish with all the cavern activities
- Preparations for the 2022 Muon shifts on the way •
- **HV recommissioning**: installation of the HV power supplies for channel doubling of BO chambers is done except for BOF12 and BOF14
- **RPC Gas system**: installation of 1168 no-return valves (1 valve per output line) needed to reduce leak rate from newly broken inlets \rightarrow Activity close to completion

RPC BIS78

- Stations of side A installed
- Gas provided with a secondary gas system
- All HV sectors tested •
- All LV systems successfully installed
- DCS software overall in good shape


....Phase II: INFN commitments

- **BI** Chambers
 - New 300 RPC triplets to increase • trigger acceptance
 - New FF electronics
- **BIS78-Side C installation**
- Full replacements of the RPC trigger and **RO** electronics
- Replacement of the power system

Phase I: New Small Wheel Activity

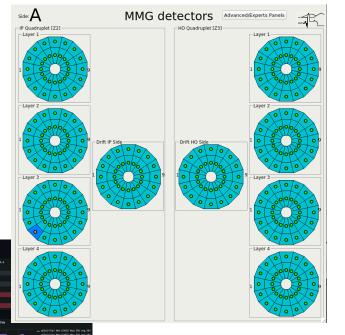
NSW General Status

- NSW-A installed on July 12, 2021
 - in run position since Jan 13, 2022
- NSW-C installed on Nov. 9, 2021
 - in run position since Jan 26, 2022
- Micromegas
 - Connectivity OK and cooling tuned
 - Both wheels are under gas since their installation in the cavern with HV on as much as possible
 - Baselines and calibrations are acquired continuously to monitor the evolution
- Joined the ATLAS partition during pilot beam run with 1 sector (not during stable beam collisions)
 - Stability issues observed with Felix and OPC server
- Main news from CSN1
 - Able to run with 1 sTGC sector during M11 for 2-3 nights (crash in the end, so still stability issues)
 - From yesterday: also an MM sector integrated!

LNF responsibilities for NSW

M. Antonelli as **Project Leader** Work @ LNF

- Assembly of the 36 final SM1 Modules ended in 2020
 Work @ CERN
- Integration of the modules into MM-sectors @ BB5 (HV Team: G. Mancini (resp.), C. Arcangeletti et al.)
- Cosmic Ray Stand on modules @ BB5 (G. Mancini (resp.), C. Arcangeletti, E. Capitolo)
- Hospital Facility (M. Antonelli, C. Arcangeletti (resp.), E. Capitolo, S. Cerioni, S. Lauciani, G. Mancini, B. Ponzio and G. Pileggi)
- Installation and commissioning of the MM @ B191 (G. Mancini (coordinator), C. Arcangeletti (HV resp.))
- MM Commissioning @ P1 (M. Antonelli (coordinator), C. Arcangeletti (HV resp.))
- Services installation (E. Capitolo, B. Ponzio and G. Pileggi)
- Task Forces:
 - New gas mixture with Isobutane (M. Antonelli, G. Mancini, C. Arcangeletti)
 - Elx noise problem (B. Ponzio, P. Albicocco)

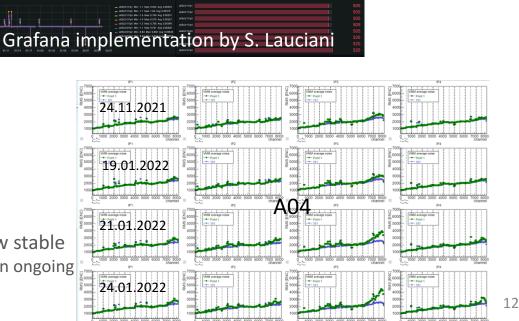


MM Commissioning

Splashes during Pilot Run!!! MMG PS - Channel : EIZ2R2A10 RO L1 PCB3

2021 08:26:21 PM CEST .640

VA:CAEN/PSMMG02/boan 529 95



High Voltage

- All channels connected except 4 sections (1 section = ½ of the 2048 total channels)
 - 2 known from surface commissioning, 2 new just after installation
- HV test done with both Ar:CO₂ and Ar:CO₂:iC₄H₁₀ gas mixtures
- HV continuously on (at operating voltage) with $Ar:CO_2:iC_4H_{10}$
- HV DCS ready and working
 - Some functionalities under development + debug from users ongoing
 - Definition of FSM transition thresholds and alarm to be implemented
- HV (I and V) Monitoring with Grafana (new within Muons)

Electronics

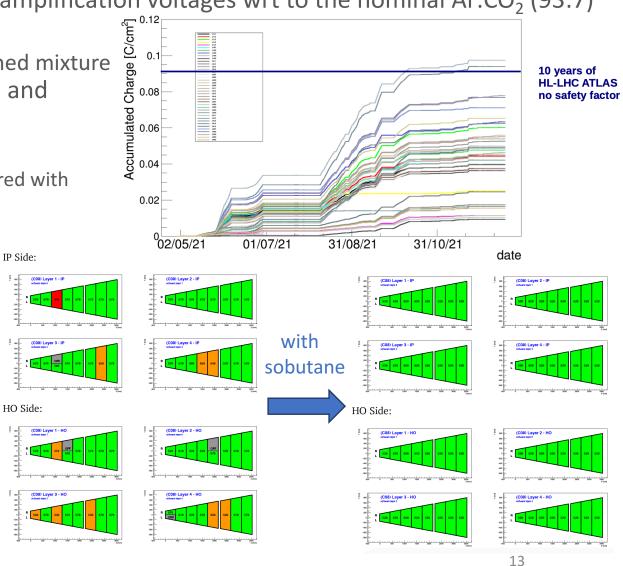
- System ok all FE boards (MMFE8) working
- Integrated into the DCS
- 4 LVBD not working (0.78%)
 - 3 known from surface commissioning, 1 new
 - All on A-side, none on C-side
- Noise increase observed on NSW-A, after the movement and later, now stable
 - Several sectors affected, particularly A04, A05, A07, A09, A11. Investigation ongoing

oltage

Micromegas: gas mixture enriched with Isobutane

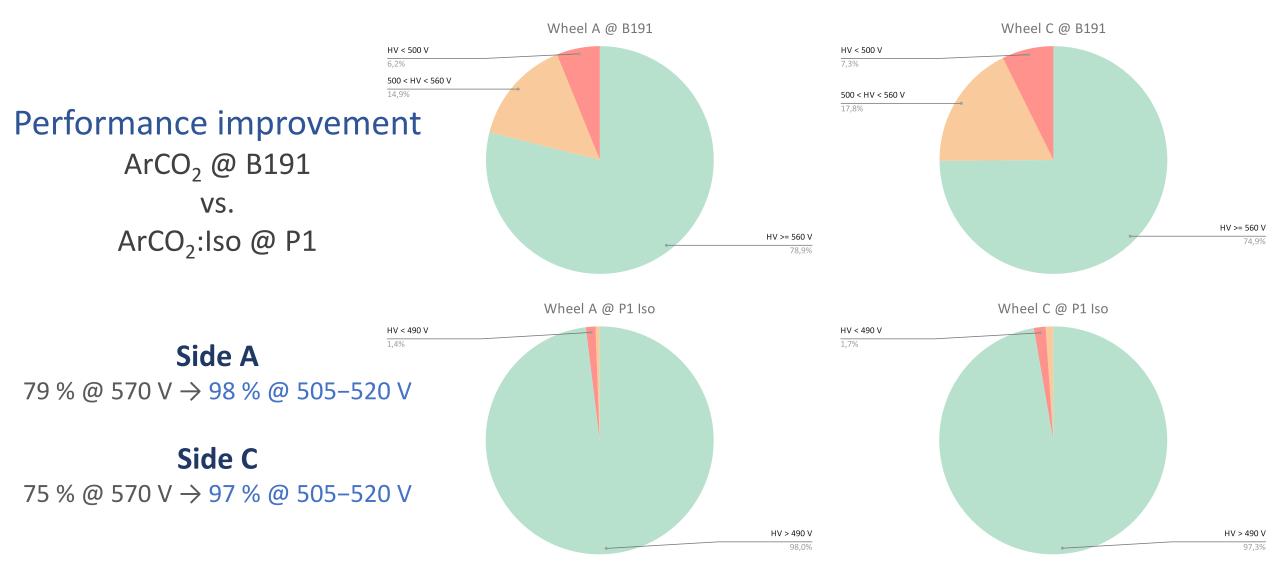
Gas mixture Ar:CO₂:iC₄H₁₀ (93:5:2) allows to run at lower amplification voltages wrt to the nominal Ar:CO₂ (93:7) to reach better performances

→ Unstable HV sections behave better with the Isobutane enriched mixture Several activities ended/on–going to study the performance and the ageing effects


- Ageing studies
 - GIF++^[1] long term studies to reach an accumulated charge compared with HL LHC
 - Some HV sections accumulated >10 years of HL–LHC!
 - Test with neutron sources @ LMU (Munich)
 - Test with X-rays @ CERN
- HV stability and performance studies
 - Test @ construction sites on single modules
 - Test @ BB5 during integration on Wedges \rightarrow cosmic results
 - Test beam @ H4/GIF++ 100 GeV muon tracking under γ -bkg

Review on 2nd February 2022: Success!!!

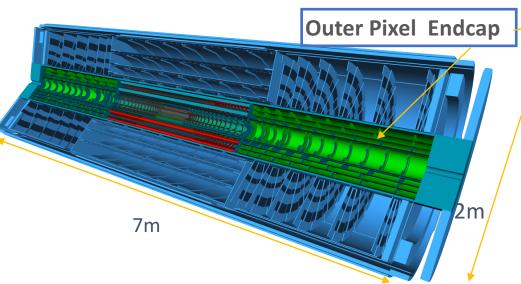
Final Recommendation

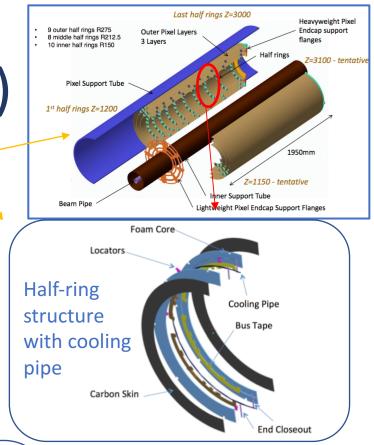

The ATLAS MM team has gained an incredible amount of knowledge, analysis and reaction capacity. The MM detector is in good hands.

The panel recommends to start Run 3 with Ar-CO2-iC4H10 93-5-2.

^{[1] 137}Cs 662 keV Gammas 14 TBq 15 kHz/cm2 at 3m distance

HV Test with Isobutane @ P1

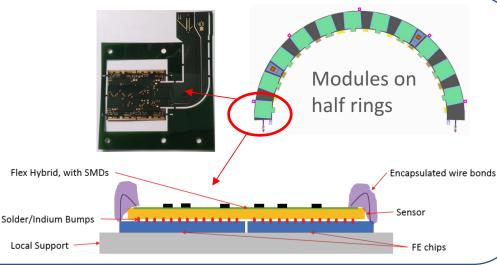



Phase II: ITk and Muon Activity

Pixel Endcap of the InnerTracker (ITk)

Full silicon tracker: strip + pixel

- Keep occupancy at few % level → finer segmentation
- Increase data rate capability
- Increase radiation hardness
- Track reconstruction efficiency >99% for muons, >85% for electrons and pions
- Fake rate < 10⁻⁵
- Low material budget


Italy is building one outer pixel endcap of the ITk detector

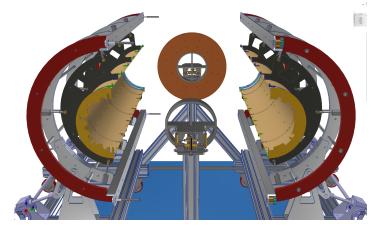
Hybrid Module:

- Sensor bump-bonded to a FE chip
- 4 FE chips for one sensor in the endcap
- 1172 modules for one endcap

Frontend Chip

- 65nm technology
- Pixel sizes 50x50 um² (25x100 um²)
- Pixels 384x400
- Readout Data rate= max 5.12 Gbits/s
- 8912 data-links for one endcap

ITk General Status

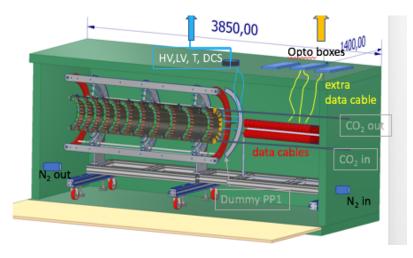

- 3D sensors: Pre-production completed
- Hybridization
 - Starting the pre-production phase
 - Task force to study the thermic stress on the detector
- Module Assembly
 - Assembly activity based on the RD53A program at Milano and Genova ended
 - Ready to start the pre-production as soon as the first bare modules will be ready (end of summer)
- Modules QA/QC: Site qualification (BO, UD, TIFPA) almost completed
- DAQ , DCS, cooling for system test: Tools preparation @ BO, GE, LE and LNF
- Integration @ LNF
 - Prototype ready to be tested with a test- half-shell coming from UK
 - Clean room and climate chamber work in progress \rightarrow ended by Spring/Summer
- ITk milestones related to 3 important reviews
 - Module FDR (19th May)
 - Loaded local supports FDR (21st Oct)
 - Bare Local supports PRR (18th Nov)

LNF responsibilities for ITk

LNF is responsible for the integration and commissioning

Mechanical assembly

• Tooling and procedures design


S. Tomassini, D. Orecchini

Prototype @ LNF

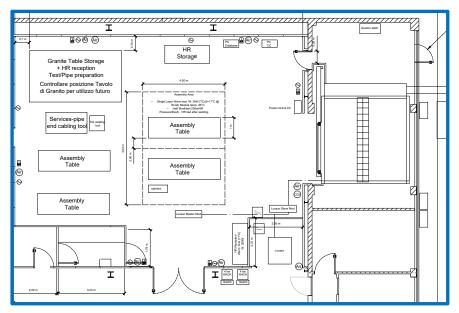
Commissioning

- Reception test of half-rings
- Electrical services design and prod.
- TIG welding
- Pressure & leak tests
- Functional tests of half-shells at warm and cold CO₂ temperature
- Thermal cycle of half-shells with detector off

M. Testa, P. Albicocco, E. Dane', M. Beretta, G. Cesarini, S. Tomassini

Pixel ITk: Infrastructures for LNF

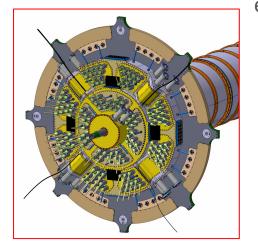
- New infrastructures for the commissioning:
 - Climate chamber for thermo-cycles
 - CO₂ cooling to cool down the modules
 - Clean room refurbishment

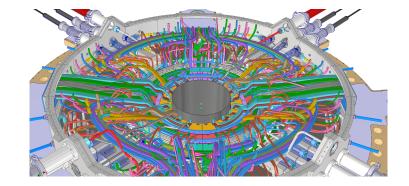


last commissioning week@DESY in next months

C. Ligi

Clean room refurbishment @ Capannone G. Sasso


S. Cantarella, E. Dane', C. Ligi, M. Testa



E. Dane', G. Cesarini, M. Beretta

Patch Panel 1 for ITk

- LNF is responsible for design of
 - mech. structure,
 - piping, cabling
 - prototypes
 - production

E. Dane'; F. Rosatelli; D. Orecchini S. Tomassini. In the **Patch Panel 1** the services from **all** sub-detectors (inner and outer pixel system, strips) are routed to the off-detector electronics

Phase II Muon

Responsible: M. Beretta

Replacement of the entire power supply system of the ATLAS spectrometer

- Technical specifications of the various detectors defined
- The tender was divided into three lots:
 - Lot 1 MDT and sMDT ELV, LV and HV, and sTGC HV;
 - Lot 2 TGC ELV, LV and HV;
 - Lot 3 Legacy RPC and BI RPC ELV, LV, HV and Monitor / Control.
- Two reviews with the sub-detectors and the ATLAS management passed
- First iteration with the CERN procurement office \rightarrow the definitive review will be made in April
- Feedback from the CERN Legal office received two weeks ago
 - request to make several changes to the technical specifications
 - \rightarrow implementation on-going

Conclusions

Run 3...

- Despite the limitation due to COVID pandemic affecting some activities:
 - Huge effort to successfully complete the challenging Phase1 upgrade projects and system consolidation
- Crucial contribution from Italian ATLAS community in many areas
 - LNF main role in the NSW completion
 - Work is continuing to complete the (re)commissioning of the detector on time for the start on Run3

...Phase II

• Lots of activities on-going for the next ATLAS upgrade

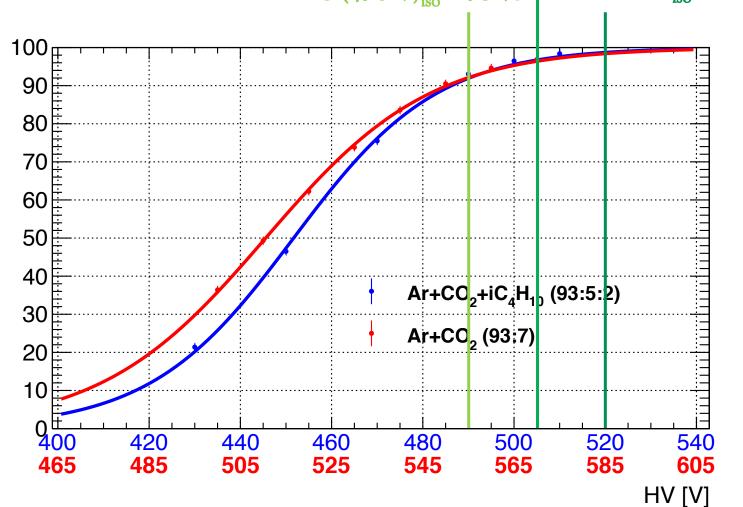
Splashes!

A10 SM2 – IP L1 PCB3 @ 530 V Spike train of about 5 nA

Ramped up @ 550 V Spike train of about 20 nA

Micromegas: gas mixture enriched with Isobutane

 $\boldsymbol{\varepsilon}$ (505 V)_{iso} ~ $\boldsymbol{\varepsilon}$ (570 V)_{ArCO2}


 ϵ (520 V)_{iso} ~ 98% ϵ (490 V)_{iso} ~ 93 %

HV Working Points in $Ar:CO_2:iC_4H_{10}$

- 490 V
 - $\varepsilon \sim 93$ % (almost equivalent to 555 V in $ArCO_{2}$)

8 [%]

- 505 V
 - Efficiency and gain equivalent to 570 V in ArCO₂
- 520 V
 - Better Efficiency and gain wrt 570 V in ArCO₂
 - Higher gain for µTPC

