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Lecture 2: Many-body techniques
Part 1: Exact methods
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Many-body Schrödinger equation

⦿ Goal: solve A-body Schrödinger equation (for any A)
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which is a basis-independent function of the energy.
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many-nucleon Hamiltonian A-body wave function

A-body energies of ground and excited states

⦿ Only input

○ Given as a sum of many operators in momentum space (⨂ spin & isospin)

○ Coupling constants in X-body sector (ideally) fitted on X-body observables

○ Increasingly complicated as more nucleons are involved
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Coordinate-space vs configuration-space methods

⦿ Coordinate-space methods

⦿ Configuration-space methods

○ Directly work with many-body wave function (e.g. Monte Carlo sampling)

✓ Flexible (any spatial configuration is accessible) + no intensive memory requirement

✗ Sign problem ➝ constrained choice of operators + expensive in processor time

○ Expand eigenstates on a basis of known many-body states

✓ Universally applicable to any operator + amenable to controlled approximations

✗ Expensive in memory usage + constrained by the properties of basis states

Correlations as particle-hole excitations

⦿ In configuration-space methods, correlations are accounted for by means of ph excitations

○ Recall:

Tichai et al. MBPT for Finite Nuclei

both generate all allowed diagrams at a given order without
missing any and to evaluate their expression in a quick and error-
safe way. Consequently, the last tool introduced to tackle this
difficulty consists of an automatized generation and evaluation
of diagrams [88–95]. All these technical, yet crucial, aspects of
MBPT are not addressed in the present article and the interested
reader is referred to the references.

5.1. Reference State
The present chapter is dedicated to the simplest form of MBPT
appropriate to closed-shell systems. This first version relies on the
use of a symmetry-conserving Slater determinant reference state

|!⟩ ≡
A

∏

i=1

c†i |0⟩, (34)

where the set of single-particle creation operators {c†p} acts on
the physical vacuum |0⟩. This constitutes an appropriate starting
point of the perturbative expansion as long as |!⟩ denotes a
closed-shell Slater determinant in agreement with the left-hand
case in Figure 2. While, in principle, the single-particle basis
is completely arbitrary, applications will reveal its significant
impact on the qualitative behavior of the perturbative expansion.

5.2. Normal Ordering
Applying Wick’s theorem with respect to |!⟩, the Hamiltonian
can be rewritten in terms of normal-ordered contributions

H = H[0]+
∑

pq

H[2]
pq : c†pcq :+

1
4

∑

pqrs

H[4]
pqrs : c†pc

†
qcscr :+ . . . , (35)

where : : denotes the normal order of the involved creation and
annihilation operators. Thus, H[0] is the expectation value of
H in |!⟩ whereas H[2]

pq and H[4]
pqrs define matrix elements of

effective, i.e., normal-ordered, one-body and two-body operators,
respectively. The dots denote normal-ordered operators of higher
ranks, up to the maximum rank kmax characterizing the initial
Hamiltonian (Equation 3). Through the application of Wick’s
theorem, an effective operator of rank keff receives contributions
from all initial operators with rank k, where keff ≤ k ≤
kmax. Using an initial Hamiltonian with up to three-nucleon
interactions and working in the normal-ordered two-body
approximation (NO2B) [79, 82], the residual three-body part
H[6] is presently discarded. For explicit expressions of the matrix
elements defining the normal-ordered operator (see [79, 82, 83]).

5.3. Partitioning
To explicitly set up the partitioning of the Hamiltonian
(Equation 8), one adds and subtracts a diagonal normal-ordered
one-body operator

H̄[2] ≡
∑

p

ep : c†pcp : (36)

such that

H0 = H[0] +
∑

p

ep : c†pcp :, (37a)

H1 ≡ H̆[2] +H[4], (37b)

with

H̆[2] ≡ H[2] − H̄[2] =
∑

p≠q

H[2]
pq : c†pcq : . (38)

Introducing the set of Slater determinants obtained from |!⟩ via
n-particle/n-hole excitations

|!ab···
ij··· ⟩ ≡ c†ac

†
b . . . cjci|!⟩, (39)

one obtains an orthonormal basis of the A-body Hilbert space

H
A = {|!⟩, |!a

i ⟩, |!
ab
ij ⟩, |!

abc
ijk ⟩, ...}, (40)

which is nothing but the eigenbasis of H0

H0|!⟩ = H[0]|!⟩, (41a)

H0|!
ab···
ij··· ⟩ = (H[0] + ϵab···ij··· )|!

ab···
ij··· ⟩, (41b)

where

ϵab···ij··· ≡ (ea + eb + · · · )− (ei + ej + · · · ) (42)

sums (subtracts) the n one-body energies of the particle (hole)
states the nucleons are excited into (from). Equation (41)
corresponds to the explicit form of Equation (9) in the case of
a Slater determinant reference state.
Convention: One-body states occupied (unoccupied) in the
reference determinant are labeled by i, j, k, ... (a, b, c, ...) and are
referred to as hole (particle) states. Generic one-body states are
denoted by p, q, r, ....

The single-particle energies {ϵp} are parameters of the theory
that are fixed by the partitioning, which itself defines the
reference state. They can be chosen arbitrarily as long as the
A occupied hole states have lower energies than the remaining
particle states, such that ϵab···ij··· > 0. A simple choice employed in
nuclear physics consists of building |!⟩ by filling up the A lowest
single-particle eigenstates of the spherical harmonic oscillator
Hamiltonian [32, 33], i.e., setting

H0 ≡
p⃗ 2

2m
+

1
2
mω2r⃗ 2, (43)

where the oscillator frequency ω specifies the width of the
potential. A more standard choice throughout various fields of
many-body physics and chemistry relates to the so-called Møller-
Plesset partitioning that corresponds to taking H̆[2] = 0, i.e.,
H1 = H[4]. This is obtained by using the reference Slater
determinant |!⟩ solution of the Hartree-Fock (HF) variational
problem and by defining H̄[2] from the eigenvalues of the one-
body HF Hamiltonian.
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Ref. Slater ➝   expand on

⦿ Configuration-interaction techniques (e.g. no-core shell model)

○ Few-p-few-h and many-p-many-h excitations treated on an equal footing

⦿ Expansion techniques

○ Expansion in the rank k of kp-kh excitations

○ Efficient treatment of both dynamical and static correlations

○ Efficient treatment of dynamical correlations, difficult to treat static correlations

Correlations as particle-hole excitationsCorrelations as particle-hole excitationsCorrelations as particle-hole excitations

+  …  ++ +  …  + +  …

Ref 1p1h 2p2h 3p3h

Correlations as particle-hole excitations

Markov chain:

F D, O = T x, y A x, y

One possible implementation ( genial! ):
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One-body (= single-particle) basis

⦿ Basic constituents: nucleons characterised by position, spin and isospin

○ Single-nucleon states expressed as

⦿ Standard choice for nuclear structure approaches 

⦿ Orbital angular momentum and spin are typically coupled 

e.g., solutions of one-body harmonic oscillator

eigenstates of s2 and sz with s=1/2

eigenstates of t2 and tz with t=1/2
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Many-body basis

⦿ When dealing with fermions, many-body states have to be explicitly antisymmetrised
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Antisymmetrisation operator

Slater determinants

○ Antisymmetric under exchange
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○ Encodes Pauli principle
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➝  minimal intrinsic correlations

⦿ Any antisymmetric state can be expanded in the Slater determinant basis
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Configuration interaction

1. Select a one-body basis

2. Construct A-body basis of Slater determinants

3. Convert Schrödinger equation into a matrix eigenvalue problem
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Model space truncations

⦿ Expansion on Slater determinants involves an infinite number of basis states

➪ truncations have to be necessarily introduced

⦿ Two main ways of truncating the basis

○ Full CI: truncate the one-body basis (at some maximum single-particle energy emax)

○ No-core shell model: cut the many-body basis (total number of HO excitation quanta Nmax)
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obviously cannot store an infinite vector…  

Robert Roth - TU Darmstadt - March 2021

No-Core Shell Model (NCSM)

! technical advantages of the NCSM: 

• many-body energy truncation (Nmax) truncation is much more efficient than 
single-particle energy truncation (emax, cf. FCI) 

• equivalent NCSM formulation in relative / Jacobi coordinates for each Nmax 

• explicit separation of center of mass and intrinsic motion for each Nmax

24

! special case of a CI approach: 

• single-particle basis is a  
spherical HO basis 

• truncation in terms of the total 
number of HO excitation quanta 
Nmax in the many-body states

6 Many-Body Calculation

After the SRG transformation of the initial �EFT interaction and the subsequent transformation to the JT-coupled
scheme, we want to solve the stationary Schrödinger equation,

H
�� i
↵
= Ei

�� i
↵

, (6.1)

for a given nucleus, where we are interested in the eigenvalues Ei . We only focus on the lowest eigenvalue, the
ground-state energy, which we use to investigate our new interactions that include irreducible four-body parts from
the SRG evolution.

An completely exact calculation would in principle require an infinite model space, and is therefore not possible.
However, our many-body methods, i.e., the NCSM and IT-NCSM, converge to the exact results when increasing
the model space size. Therefore, the calculation can be performed for any desired accuracy, as long as the model
space stays small enough to handle it. For simplicity we first discuss the no-core shell model (NCSM) without any
importance truncation.

The most prominent feature of the NCSM is its model space. It uses antisymmetric HO states for building the model
space. In principal, different kinds of HO bases are possible, but we focus on the m-scheme (Sec. 4.2), i.e., Slater-
determinants of single-particle HO states. First, the possible unperturbed Slater determinants are constructed, i.e.,
all m-scheme basis states with the lowest HO energy possible are included. For example, 4He would have two
protons and two neutrons in the s-shell. The total HO energy quantum number is E = 0 in this case and there is
only one Slater determinant that can be constructed. In the case of 5He, an additional neutron can be found in the
p-shell, raising the total HO energy quantum number to E = 1. Since we have multiple single-particle states in the
p-shell with the same HO energy, we have to add all the possible Slater determinants to our model space that have
one neutron in one of the p-shell single-particle states while the other two neutrons occupy the s-shell.

In a second step, excited HO configurations are added. We find these configurations by taking one of the unper-
turbed Slater determinants and moving one or multiple nucleons to states in upper shells. The relevant parameter
in this case is the excitation energy: As the energy difference between adjacent shells is always ~h!, we simply count
the total number of shells we lift the particles. For example, Fig. 6.1 shows a 6 ~h! configuration for 16O. This num-
ber is limited by Nmax, e.g., a model space with Nmax = 2 includes all the unperturbed Slater determinants, all
configurations where one particle has been lifted one or two shells and all configurations where two particles have
been lifted one shell each.

0s

0p

0d, 1s

0f, 1p

0g, 1d, 2s
�E = ~h!

Figure 6.1: Configuration for 16O with an excitation energy of 5 ~h!. Neutrons are depicted as blue dots, whereas protons are
red.

For a given nucleus and Nmax truncation, we can construct the necessary energy truncation E4
max, which we use for

the four-body m-scheme representations of the interaction. For instance, a consistent Nmax = 2 calculation of 4He
needs four-body m-scheme matrix elements with E4

max = 2. An 16O calculation, on the other hand, would require
matrix elements with E4

max = 6, as picking four particles out of a 16-body NCSM model space with Nmax = 2 can
at most yield a total HO energy quantum number of E = 6 for these four particles.
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Example: Nmax = 6

[Figure: R.Roth]



Computational strategy

⦿ Key features

○ One is only interested in a few low-lying eigenstates

○ Hamiltonian matrix is sparse (< 0.01% of non-zeros at working values of Nmax)

○ Lanczos-type algorithms employed to extract first few eigenstates and associated eigenvalues

○ Fast storage of non-zero matrix elements sets the limits of matrix dimensions
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Figure 2: On the left, sparsity structure of Ĥ for 6Li at Nmax = 2, with 800 many-body basis
states, 92 groups of states, 1,826 nonzero tiles and 33,476 nonzero matrix elements in the lower
triangular portion of the symmetric matrix. On the right a more detailed plot of one CSB block
(the (3,2)-block) of this matrix. Boundaries of CSB blocks and tiles are indicated by the solid and
dashed lines, respectively.

The grouping of many-body basis states leads to a partitioning of Ĥ into many tiles. Each
tile can be indexed by two group identification labels g(a) ⌘ (g(a1), g(a2), . . . , g(aA)) and g(a0) =
(g(a01), g(a

0
2), . . . , g(a

0
A
)), where g(ai) denotes the (n, l, j) quantum numbers associated with the

single-particle state ai. The dimension of the tile is determined by the sizes of g(a) and g(a0). In
MFDn, we first perform pairwise comparisons of g(a) and g(a0) to determine (potentially) nonzero
tiles. If g(ai) 6= g(a0

j
) for more than d single-particle states i and j, the entire tile indexed by g(a)

and g(a0) is zero. If g(ai) 6= g(a0
j
) for up to d single-particle states, then the tile generally contains

nonzero matrix elements.
Note that the sparsity of these nonzero tiles depends on the number of single-particle states

that di↵er between g(a) and g(a0). The diagonal tiles, with g(a) = g(a0), are generally the least
sparse (most dense) tiles, whereas tiles for which g(a) and g(a0) di↵er by exactly d particles are
the most sparse (least dense). In principle, additional blocking techniques such as those described
in [26] can be used to identify potentially nonzero tiles, or nonzero matrix elements within the tiles,
and further reduce the number of pairwise comparisons of (groups of) many-body basis states.

In Fig. 2, we show the sparsity pattern for a small case, 6Li, with three protons and three
neutrons, truncated to Nmax = 2. The M = 0 basis space dimension is 800, and the number
of groups is 92. Thus, there are in principle 4,186 tiles in half of the symmetric matrix, and
320,400 matrix elements. The number of (potentially) nonzero tiles is 1,826, corresponding to a
“tile-sparsity” of 0.44, and the total number of nonzero matrix elements within these nonzero tiles
is 33,476, corresponding to a sparsity of 0.104.

A well known technique for improving the performance of sparse matrix computation on modern
processors is blocking, i.e., partitioning the matrix into a number of smaller blocks that can be
loaded into fast memory (e.g., level-2 cache) and processed one block at a time. It is tempting to
use the tile structure of Ĥ to naturally block the matrix. However, this is not the best strategy.

7

⦿ Computational solutions & limitations

○ Extensive use of parallelisation, matrix transformations, optimisation techniques, …

⦿ Involved computational problem as A increases



⦿ “Back-of-the-envelope” estimate of matrix dimensions

⦿ How many Slater determinants can be built from a given number of single-particle states?

○ Take A nucleons and n single-particle states
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⦿ Example: 16O (Z = 8, N = 8) in 40 single-particle states

for protons for neutronsx
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➪ Total of D = 6·1015  Slater determinants

○ Petascale machines: D ~ 1010   // Exascale machines: D ~ 1012

○ Case of Full CI (recall: truncation acts on the single-particle basis)

➪ Number of non-zero matrix elements (NN only!) scales as D1.2  ➝  ~ 1018 non-zero entries

➪ Size in memory beyond EB  ➝  well beyond current capabilities

⦿ Current computational limits for the storage and diagonalisation of a large matrix

CI dimensionality
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nucleus. The heavier of these nuclei have been the subject of intense experimental investigation
and it is now believed that 28O is not a particle-stable nucleus even though it is expected to
have a doubly-closed shell structure according to the phenomenological shell model. It would
be very valuable to have converged ab initio NCFC results for 28O to probe whether realistic
potentials are capable of predicting its particle-unstable character.

We also include in Fig. 3 the estimated range that computer facilities of a given scale can
produce results with our current algorithms. As a result of these curves, we anticipate well
converged NCFC results for the first three isotopes of Oxygen will be achieved with Petascale
facilities since their curves fall near or below the upper limit of Petascale at Nmax = 10.

Dimensions of the natural parity basis spaces for another set of nuclei ranging up to A = 40 are
shown in Fig. 4. In addition, we include estimates of the upper limits reachable with Petascale
facilities depending on the rank of the potential. It is important to note that theoretically
derived 4N interactions are expected to be available in the near future. Though relatively less
important than 2N and 3N potentials, their contributions are expected to grow dramatically
with increasing A.

A significant measure of the computational burden is presented in Figs. 5 and 6 where
we display the number of non-zero many-body matrix elements as a function of the matrix
dimension (D). These results are for representative cases and show a useful scaling property. For
Hamiltonians with NN potentials, we find a useful fit F (D) for the non-zero matrix elements
with the function

F (D) = D + D1+ 12
14+ln D . (1)

The heavier systems displayed tend to be slightly below the fit while the lighter systems are
slightly above the fit. The horizontal red line indicates the expected limit of the Jaguar facility
(150,000 cores) running one of these applications assuming all matrix elements and indices are
stored in core. By way of contrast, we portray the more memory-intensive situation with NNN
potentials in Fig. 6, where we retain the fitted curve of Fig. 5 for reference. The horizontal red
line indicates the same limit shown in Fig. 5.
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⦿ No-core shell model 

○ More gentle scaling (recall: truncation Nmax  acts on the many-body basis)

3H

➪ Very quickly one reaches the computational limits

Convergence w.r.t. Nmax

[Vary et al. 2009]

NCSM dimensionality
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nucleus. The heavier of these nuclei have been the subject of intense experimental investigation
and it is now believed that 28O is not a particle-stable nucleus even though it is expected to
have a doubly-closed shell structure according to the phenomenological shell model. It would
be very valuable to have converged ab initio NCFC results for 28O to probe whether realistic
potentials are capable of predicting its particle-unstable character.
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facilities depending on the rank of the potential. It is important to note that theoretically
derived 4N interactions are expected to be available in the near future. Though relatively less
important than 2N and 3N potentials, their contributions are expected to grow dramatically
with increasing A.
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with the function
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The heavier systems displayed tend to be slightly below the fit while the lighter systems are
slightly above the fit. The horizontal red line indicates the expected limit of the Jaguar facility
(150,000 cores) running one of these applications assuming all matrix elements and indices are
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⦿ No-core shell model 

○ More gentle scaling (recall: truncation Nmax  acts on the many-body basis)

3H

➪ Very quickly one reaches the computational limits

Convergence w.r.t. Nmax

[Vary et al. 2009]

1. Improve Nmax convergence

2. Get rid of 3N forces

3. Get rid of some matrix elements ➝  Importance truncation

➝  NO2B approximation

➝  SRG transformations

NCSM dimensionality
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Short-range correlations & “low-momentum” interactions

⦿ Why do we need to include such high values of Nmax / large matrix dimensions?

○ Traditionally linked to “hard core” of one-boson exchange potentials

○ Weaker but present in modern chiral interactions

⦿ Idea: use unitary transformations on H to suppress these correlations

○ Goal: achieve decoupling between low- and high-momenta

○ Builds on EFT ideas (further change in “resolution”)

⦿ Nuclear interactions generate short-range correlations in many-body states

Λ0

Λ1

Λ2

k’

k

(a)

λ0 λ1 λ2

k’

k

(b)

Figure 9: Schematic illustration of two types of RG evolution for NN potentials in momentum space:
(a) Vlow k running in Λ, and (b) SRG running in λ. At each Λi or λi, the matrix elements outside of the
corresponding lines are zero, so that high- and low-momentum states are decoupled.

60, 61], as shown, for example, in Fig. 8. For variable-cutoff potentials, three-body (and higher-body)
interactions evolve naturally with the resolution scale.

1.3 Renormalization group approaches

A fundamental tenet of renormalization theory is that the relevant details of high-energy physics for
calculating low-energy observables can be captured in the scale-dependent coefficients of operators
in a low-energy Hamiltonian [29]. This principle does not mean that high-energy and low-energy
physics is automatically decoupled in every effective theory. In fact, it implies that we can include as
much irrelevant coupling to incorrect high-energy physics as we want by using a large cutoff, with no
consequence to low-energy predictions (assuming we can calculate accurately). But this freedom also
offers the possibility of decoupling, which makes practical calculations more tractable by restricting
the necessary degrees of freedom. This decoupling can be efficiently achieved by evolving nuclear
interactions using RG transformations designed to handle similar problems in relativistic field theories
and critical phenomena in condensed matter systems.6

The general purpose of the RG when dealing with the large range of scales in physical systems was
eloquently explained by David Gross [63]:

“At each scale, we have different degrees of freedom and different dynamics. Physics at a
larger scale (largely) decouples from the physics at a smaller scale. . . . Thus, a theory at a
larger scale remembers only finitely many parameters from the theories at smaller scales,
and throws the rest of the details away. More precisely, when we pass from a smaller scale
to a larger scale, we average over irrelevant degrees of freedom. . . . The general aim of the
RG method is to explain how this decoupling takes place and why exactly information is
transmitted from scale to scale through finitely many parameters.”

The common features of RG for critical phenomena and high-energy scattering are discussed by Steven
Weinberg in an essay in Ref. [64]. He summarizes:

“The method in its most general form can I think be understood as a way to arrange in
various theories that the degrees of freedom that you’re talking about are the relevant degrees
of freedom for the problem at hand.”

6For an early discussion of decoupling based on Okubo unitary transformations, see Ref. [62].
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○ Low-energy observables unchanged

○ Corresponding wave functions are less correlated

○ Drawback: additional many-body forces generated

➪ Similarity renormalisation group (SRG) transformation

○ Short distance / high momenta / high energy  ➝  large Hilbert space needed
1
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SRG transformation
116 S.K. Bogner et al. / Progress in Particle and Nuclear Physics 65 (2010) 94–147

Fig. 27. Contour plots of momentum–space matrix elements for the SRG evolution with � in (a) 1S0, (b) S-wave part of the 3S1–3D1 and (c) 1P1 channels.
The initial potential in (a) is the (⇤ = 600 MeV) N3LO potential [20] and in (b) and (c) the N3LO potential with ⇤/e⇤ = 500/600 MeV [44].

Fig. 28. (a) Low-momentum universality for momentum–space matrix elements of the evolved SRG potentials at � = 2 fm�1 for 1S0 (top, diagonal
elements) and 3S1 (bottom, off-diagonal elements). Also shown is the Vlow k potential for a smooth regulator with ⇤ = 2 fm�1 and nexp = 4. (b) Largest
repulsive Weinberg eigenvalues in the 1S0 and 3S1–3D1 channels as a function of �, with initial potentials as in Fig. 27. For details, see Ref. [7].

The evolution of the Hamiltonian according to Eq. (22) as s increases (or � decreases) is illustrated in Fig. 27, using two
initial chiral EFT potentials. On top is 1S0 starting from the harder (⇤ = 600 MeV) N3LO potential of Ref. [20], which has
significant strength near the high-momentum diagonal, in the middle is the S-wave part of the 3S1–3D1 channel starting
from one of the potentials of Ref. [44], which has more far off-diagonal strength initially and comparatively weaker higher-
momentum strength on the diagonal, and on bottom is 1P1 with that same potential. Each of these examples show the
characteristic features of the evolution in �, namely the systematic suppression of off-diagonal strength, as anticipated,
with the width of the diagonal scaling as �2.

The SRG-evolved interactions share key similarities (universality, increased perturbativeness, weaker correlations, etc.)
with the smooth-cutoff Vlow k potentials, even though the decoupling of low and high momenta is achieved in a somewhat
different manner. As � is lowered, different initial potentials flow to similar forms at low momentum (while remaining
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SRG in A-body systems

⦿ Effect of induced many-body forces is non-negligible already in small systems

duced many-body forces can be directly identified. Having
chosen such a basis, we obtain coupled first-order differ-
ential equations for the matrix elements of the flowing
Hamiltonian H!, where the right side of Eq. (2) is eval-
uated using simple matrix multiplications.

Our calculations are performed in the Jacobi coordinate
harmonic oscillator (HO) basis of the no-core shell model
(NCSM) [14]. This is a translationally invariant, antisym-
metric basis for each A, with a complete set of states up to a
maximum excitation of Nmax@! above the minimum en-
ergy configuration, where ! is the harmonic oscillator
parameter. The procedures used here build directly on
Ref. [13], which presents a one-dimensional implementa-
tion of our approach along with a general analysis of the
evolving many-body hierarchy.

We start by evolving H! in the A ¼ 2 subsystem, which

completely fixes the two-body matrix elements hVð2Þ
! i.

Next, by evolving H! in the A ¼ 3 subsystem we deter-
mine the combined two-plus-three-body matrix elements.
We can isolate the three-body matrix elements by subtract-

ing the evolved hVð2Þ
! ielements in the A ¼ 3 basis [13].

Having obtained the separate NN and NNN matrix ele-
ments, we can apply them unchanged to any nucleus. We
are also free to include any initial three-nucleon force in
the initial Hamiltonian without changing the procedure. If
applied to A $ 4, four-body (and higher) forces will not be
included and so the transformations will be only approxi-
mately unitary. The questions to be addressed are whether
the decreasing hierarchy of many-body forces is main-
tained and whether the induced four-body contribution is
unnaturally large. We summarize in Table I the different
calculations to be made for 3H and 4He to confront these
questions.

The initial (! ¼ 1) NN potential used here is the
500 MeV N3LO interaction from Ref. [15]. The initial
NNN potential is the N2LO interaction [16] in the local
form of Ref. [17] with constants fit to the average of triton
and 3He binding energies and to triton beta decay accord-
ing to Ref. [18]. We expect similar results from other initial
interactions because the SRG drives them toward near
universal form; a survey will be given in Ref. [19].
NCSM calculations with these initial interactions and the
parameter set in Table I of Ref. [18] yield energies of
%8:473ð4ÞMeV for 3H and%28:50ð2ÞMeV for 4He com-
pared with %8:482 MeV and %28:296 MeV from experi-
ment, respectively. So there is a 20 keV uncertainty in the
calculation of 4He from incomplete convergence and a
200 keV discrepancy with experiment. The latter is con-
sistent with the omission of three- and four-body chiral

interactions at N3LO. These provide a scale for assessing
whether induced four-body contributions are important
compared to other uncertainties.
In Fig. 1, the ground-state energy of the triton is plotted

as a function of the flow parameter !. Evolution is from
! ¼ 1, which is the initial (or ‘‘bare’’) interaction, toward
! ¼ 0. We use Nmax¼ 36 and @! ¼ 28 MeV, for which
all energies are converged to better than 10 keV. We first
consider an NN interaction with no initial NNN (‘‘NN
only’’). If H! is evolved only in an A ¼ 2 system, higher-
body induced pieces are lost. The resulting energy calcu-
lations will only be approximately unitary for A > 2 and
the ground-state energy will vary with ! (squares).
Keeping the inducedNNN yields a flat line (circles), which
implies an exactly unitary transformation; the line is
equally flat if an initial NNN is included (diamonds).
Note that the net induced three-body is comparable to the
initial NNN contribution and thus is of natural size.
In Fig. 2, we examine the SRG evolution in ! for 4He

with @! ¼ 36 MeV. ThehVð2Þ
! iandhVð3Þ

! imatrix elements
were evolved in A ¼ 2 and A ¼ 3withNmax¼ 28 and then
truncated to Nmax¼ 18 at each ! to diagonalize 4He. The
NN-only curve has a similar shape as for the triton. In fact,
this pattern of variation has been observed in all SRG
calculations of light nuclei [3]. When the induced NNN
is included, the evolution is close to unitary and the pattern

TABLE I. Definitions of the various calculations.

NN only No initial NNN interaction and do not keep NNN-induced interaction.
NN þ NNN-induced No initial NNN interaction but keep the SRG-induced NNN interaction.
NN þ NNN Include an initial NNN interaction and keep the SRG-induced NNN interaction.
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FIG. 1 (color online). Ground-state energy of 3H as a function
of the SRG evolution parameter, !. See Table I for the nomen-
clature of the curves.
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082501-2 only depends slightly on an initial NNN interaction. In
both cases the dotted line represents the converged value
for the initial Hamiltonian. At large !, the discrepancy is
due to a lack of convergence at Nmax¼ 18, but at !<
3 fm"1 SRG decoupling takes over and the discrepancy is
due to short-range induced four-body forces, which there-
fore contribute about 50 keV net at ! ¼ 2 fm"1. This is
small compared to the rough estimate in Ref. [20] that the
contribution from the long-ranged part of the N3LO four-
nucleon force to 4He binding is of order of a few hundred
keV. If needed, we could evolve 4-body matrix elements in
A ¼ 4 and will do so when nuclear structure codes can
accommodate them.

In Fig. 3, we show the triton ground-state energy as a
function of the oscillator basis size, Nmax, for various
calculations. The lower (upper) curves are with (without)
an initial three-body force (see Table I). The convergence
of the bare interaction is compared with the SRG evolved
to ! ¼ 2:0 fm"1. The oscillator parameter @! in each case
was chosen roughly to optimize the convergence of each
Hamiltonian. (As ! decreases, so does the optimal @!.) We
also compare to a Lee-Suzuki (LS) effective interaction,
which has been used in the NCSM to greatly improve
convergence [21,22]. These effective interactions result
from unitary transformations within the model space of a
given nucleus, in contrast to the free-space transformation
of the SRG, which yields nucleus-independent matrix
elements.

The SRG calculations are variational and converge
smoothly and rapidly from above with or without an initial
three-body force. The dramatic improvement in conver-
gence rate compared to the initial interaction is seen even
though the "EFT interaction is relatively soft. Thus, once

evolved, a much smaller Nmax basis is adequate for a
desired accuracy and extrapolating in Nmax is also feasible.
Figure 4 illustrates for 4He the same rapid convergence

with Nmaxof an SRG-evolved interaction. However, in this
case the asymptotic value of the energy differs slightly
because of the omitted induced four-body contribution.
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○ Initial (“genuine”) 4-body forces assumed to be very small

○ λ-dependence provides estimate of neglected induced 4-body contributions in 4He

[Jurgenson et al. 2009]
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evolution equations at three-body level was demonstrated
only recently [6,7]. In view of the application in the
NCSM it is convenient to solve the flow equation for the
three-body system using a harmonic-oscillator (HO)
Jacobi-coordinate basis [12]. The intermediate sums in
the 3N Jacobi basis are truncated at Nmax ¼ 40 for chan-
nels with J " 5=2 and ramp down linearly to Nmax ¼ 24
for J # 13=2. Based on this and the corresponding solution
of the flow equation in two-body space (using either a
partial-wavemomentum or harmonic-oscillator representa-
tion) we extract the irreducible two- and three-body terms
of the Hamiltonian for the use in A-body calculations.

We have made major technical improvements regarding
the SRG transformation, reducing the computational effort
by 3 orders of magnitude compared to Ref. [7], e.g., by
using a solver with adaptive step-size and optimized matrix
operations. Furthermore, we have developed a transforma-
tion from 3N Jacobi matrix elements to a JT-coupled
representation with a highly efficient storage scheme,
which allows us to handle 3N matrix-element sets of
unprecedented size. A detailed discussion of these aspects
is presented elsewhere.

Importance-truncated NCSM.—Based on the SRG-
evolved Hamiltonian we treat the many-body problem in
the NCSM; i.e., we solve the large-scale eigenvalue prob-
lem of the Hamiltonian, represented in a many-body basis
of HO Slater determinants truncated with respect to the
maximum HO excitation energy Nmax@!. In order to cope
with the factorial growth of the basis dimension with Nmax

and particle number A, we use the importance-truncation
(IT) scheme introduced in Refs. [13,14]. The IT-NCSM
uses an importance measure !" for the individual basis
states j""iderived from many-body perturbation theory
and retains only states with j!"j above a threshold !min in
the model space. Through a variation of the threshold and
an a posteriori extrapolation !min ! 0 the contribution of
discarded states is recovered. We use the sequential update
scheme discussed in Ref. [14], which connects to the full
NCSMmodel space and thus the exact NCSM results in the
limit of vanishing threshold. In the following we always
report threshold-extrapolated results including an estimate
for the extrapolation uncertainties. For the present appli-
cation we have extended the IT-NCSM to include full 3N
interactions. Using the JT-coupled 3N matrix elements we
are able to perform calculations up to Nmax ¼ 12 or 14 for
all p-shell nuclei with moderate computational resources.

Ground-state energies.—We first focus on IT-NCSM
calculations for the ground states of 4He, 6Li, 12C, and
16O using SRG-transformed chiral NN þ 3N interactions.
Throughout this work we use the chiral NN interaction at
N3LO of Entem and Machleidt [1] and the 3N interaction
at N2LO [15] with low-energy constants determined from
the triton binding energy and #-decay half-life [16]. In
order to disentangle the effects of the initial and the
SRG-induced 3N contributions, we consider three different

Hamiltonians. (i) NN only: starting from the chiral NN
interaction only the SRG-evolved NN contributions are
kept. (ii) NN þ 3N-induced: starting from the chiral NN
interaction the SRG-evolvedNN and the induced 3N terms
are kept. (iii) NN þ 3N-full: starting from the chiral
NN þ 3N interaction all SRG-evolved NN and 3N terms
are kept. For each Hamiltonian we assess the dependence
of the observables, here the ground-state energies, on the
flow-parameter $. We use the five values $ ¼ 0:04, 0.05,
0.0625, 0.08, and 0:16 fm4, which correspond to momen-
tum scales #¼$%1=4¼2:24, 2.11, 2, 1.88, and 1:58 fm%1,
respectively. For extrapolations to infinite model-space,
Nmax ! 1, we use simple exponential fits based on the
last 3 or 4 data points. The extrapolated energy is given by
the average of the two extrapolations, the uncertainty by
the difference.
The ground-state energies obtained in IT-NCSM calcu-

lations for 4He and 6Li with the three Hamiltonians are
summarized in Fig. 1. Analogous calculations in the full
NCSM for the same SRG-evolved initial Hamiltonian have
been presented in Ref. [6] for 4He and in Ref. [7] for 6Li.
We have cross-checked our results with Refs. [6,7] and
found excellent agreement.
The first and foremost effect of the SRG transformation

is the acceleration of the convergence of NCSM calcula-
tions with Nmax . With increasing $ the convergence is
systematically improved for all three versions of the
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FIG. 1 (color online). IT-NCSM ground-state energies for 4He
and 6Li as function of Nmax for the three types of Hamiltonians
(see column headings) for a range of flow parameters: $ ¼ 0:04
(blue,&), 0.05 (red,r), 0.0625 (green,m), 0.08 (violet,j), and
0:16 fm4 (light blue,w). Error bars indicate the uncertainties of
the threshold extrapolations. The bars at the right-hand side
of each panel indicate the results of exponential extrapolations
of the individual Nmax sequences (see text).
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FIG. 2: (color online) IT-NCSM ground-state energies for 12C and
16O as function of Nmax for the three types of Hamiltonians and a
range of flow parameters (for details see Fig. 1).

initial NN interaction are negligible in the α-range considered
here, indicating that the NN+3N-induced Hamiltonian is uni-
tarily equivalent to the initial NN Hamiltonian. The extrapo-
lated ground-state energies for different α are summarized in
Tab. I.
By including the initial chiral 3N interaction, i.e., by using

the NN+3N-full Hamiltonian, the ground-state energies are
lowered and are in good agreement with experiment for both,
4He and 6Li. As for the NN+3N-induced there is no sizable
α-dependence in the range considered here. We conclude that
induced 3N terms originating from the initial NN interaction
are important, but that induced 4N (and higher) terms are not
relevant for light p-shell nuclei, since the ground-state ener-
gies obtained with the NN+3N-induced and the NN+3N-full
Hamiltonian are practically α-independent.
This picture changes if we consider nuclei in the upper p-

shell. In Fig. 2 we show the first accurate ab initio calcula-

TABLE I: Summary of Nmax-extrapolated IT-NCSMground-state en-
ergies in MeV for !Ω = 20MeV (see text).

α [fm4] 4He 6Li 12C 16O
NN 0.05 -28.08(2) -31.5(2) -99.1(6) -161.0(2)
only 0.0625 -28.25(1) -31.8(1) -101.4(3) -164.9(6)

0.08 -28.38(1) -32.2(1) -103.7(2) -170.2(4)
NN+ 0.05 -25.33(1) -27.7(2) -76.9(2) -119.5(3)
3N-ind. 0.0625 -25.34(1) -27.6(2) -77.2(1) -119.7(6)

0.08 -25.34(1) -27.6(1) -77.4(2) -119.5(2)
NN+ 0.05 -28.45(3) -31.8(2) -96.1(4) -143.7(2)
3N-full 0.0625 -28.45(1) -31.8(1) -96.8(3) -145.6(2)

0.08 -28.46(1) -31.8(1) -97.6(1) -147.8(1)
exp. -28.30 -31.99 -92.16 -127.62
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FIG. 3: (color online) Nmax-extrapolated ground-state energies of 4He
and 16O as function of the flow parameter α for the NN-only (•), the
NN+3N-induced ( !), and the NN+3N-full Hamiltonian (").

tions for the ground states of 12C and 16O starting from chiral
NN+3N interactions. By combining the IT-NCSM with the
JT -coupled storage scheme for the 3N matrix elements we
are able to reach model spaces up to Nmax = 12 for the upper
p-shell at moderate computational cost. Previously, even the
most extensive NCSM calculations including full 3N interac-
tions were limited to Nmax = 8 in this regime [16]. As evident
from the Nmax-dependence of the ground-state energies, this
increase in Nmax is vital for obtaining precise extrapolations.
The general pattern for 12C and 16O is similar to the light

p-shell nuclei: The NN-only Hamiltonian exhibits a severe
α-dependence indicating sizable induced 3N contributions.
Their inclusion in the NN+3N-induced Hamiltonian leads to
ground-state energies that are practically independent of α,
confirming that induced 4N contributions are irrelevant when
starting from the NN interaction only. Therefore, the NN+3N-
induced results can be considered equivalent to a solution for
the initial NN interaction. The 16O binding energy per nucleon
of 7.48(4)MeV is in good agreement with a recent coupled-
cluster Λ-CCSD(T) result of 7.56MeV for the ‘bare’ chiral
NN interaction [17].
In contrast to light nuclei the ground-state energies of 12C

and 16O obtained with the NN+3N-full Hamiltonian do show
a significant α-dependence, as evident from Fig. 2(c) and (f).
The inclusion of the initial chiral 3N interaction does induce
4N contributions whose omission leads to the α-dependence.
A direct comparison of the α-dependence of the extrapo-

lated ground-state energies for 4He and 16O is presented in
Fig. 3. For both nuclei, the NN-only Hamiltonian exhibits
a sizable variation of the ground-state energies of about 25
MeV (0.7 MeV) for 16O (4He) in the range from α = 0.04 fm4
to 0.16 fm4. The inclusion of the induced 3N terms elimi-
nates this α-dependence. The inclusion of the initial 3N in-
teraction again generates an α-dependence of about 10 MeV
for 16O. Note that the induced 4N (and higher) contributions
that are needed to compensate the α-dependence for 16O reach
about half the size of the total 3N contribution in the SRG-
transformed Hamiltonian. This is evidence that the hierarchy
of the many-body forces in chiral EFT may not be preserved
by the SRG transformation.
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FIG. 2: (color online) IT-NCSM ground-state energies for 12C and
16O as function of Nmax for the three types of Hamiltonians and a
range of flow parameters (for details see Fig. 1).

initial NN interaction are negligible in the α-range considered
here, indicating that the NN+3N-induced Hamiltonian is uni-
tarily equivalent to the initial NN Hamiltonian. The extrapo-
lated ground-state energies for different α are summarized in
Tab. I.
By including the initial chiral 3N interaction, i.e., by using

the NN+3N-full Hamiltonian, the ground-state energies are
lowered and are in good agreement with experiment for both,
4He and 6Li. As for the NN+3N-induced there is no sizable
α-dependence in the range considered here. We conclude that
induced 3N terms originating from the initial NN interaction
are important, but that induced 4N (and higher) terms are not
relevant for light p-shell nuclei, since the ground-state ener-
gies obtained with the NN+3N-induced and the NN+3N-full
Hamiltonian are practically α-independent.
This picture changes if we consider nuclei in the upper p-

shell. In Fig. 2 we show the first accurate ab initio calcula-

TABLE I: Summary of Nmax-extrapolated IT-NCSMground-state en-
ergies in MeV for !Ω = 20MeV (see text).

α [fm4] 4He 6Li 12C 16O
NN 0.05 -28.08(2) -31.5(2) -99.1(6) -161.0(2)
only 0.0625 -28.25(1) -31.8(1) -101.4(3) -164.9(6)

0.08 -28.38(1) -32.2(1) -103.7(2) -170.2(4)
NN+ 0.05 -25.33(1) -27.7(2) -76.9(2) -119.5(3)
3N-ind. 0.0625 -25.34(1) -27.6(2) -77.2(1) -119.7(6)

0.08 -25.34(1) -27.6(1) -77.4(2) -119.5(2)
NN+ 0.05 -28.45(3) -31.8(2) -96.1(4) -143.7(2)
3N-full 0.0625 -28.45(1) -31.8(1) -96.8(3) -145.6(2)
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FIG. 3: (color online) Nmax-extrapolated ground-state energies of 4He
and 16O as function of the flow parameter α for the NN-only (•), the
NN+3N-induced ( !), and the NN+3N-full Hamiltonian (").

tions for the ground states of 12C and 16O starting from chiral
NN+3N interactions. By combining the IT-NCSM with the
JT -coupled storage scheme for the 3N matrix elements we
are able to reach model spaces up to Nmax = 12 for the upper
p-shell at moderate computational cost. Previously, even the
most extensive NCSM calculations including full 3N interac-
tions were limited to Nmax = 8 in this regime [16]. As evident
from the Nmax-dependence of the ground-state energies, this
increase in Nmax is vital for obtaining precise extrapolations.
The general pattern for 12C and 16O is similar to the light

p-shell nuclei: The NN-only Hamiltonian exhibits a severe
α-dependence indicating sizable induced 3N contributions.
Their inclusion in the NN+3N-induced Hamiltonian leads to
ground-state energies that are practically independent of α,
confirming that induced 4N contributions are irrelevant when
starting from the NN interaction only. Therefore, the NN+3N-
induced results can be considered equivalent to a solution for
the initial NN interaction. The 16O binding energy per nucleon
of 7.48(4)MeV is in good agreement with a recent coupled-
cluster Λ-CCSD(T) result of 7.56MeV for the ‘bare’ chiral
NN interaction [17].
In contrast to light nuclei the ground-state energies of 12C

and 16O obtained with the NN+3N-full Hamiltonian do show
a significant α-dependence, as evident from Fig. 2(c) and (f).
The inclusion of the initial chiral 3N interaction does induce
4N contributions whose omission leads to the α-dependence.
A direct comparison of the α-dependence of the extrapo-

lated ground-state energies for 4He and 16O is presented in
Fig. 3. For both nuclei, the NN-only Hamiltonian exhibits
a sizable variation of the ground-state energies of about 25
MeV (0.7 MeV) for 16O (4He) in the range from α = 0.04 fm4
to 0.16 fm4. The inclusion of the induced 3N terms elimi-
nates this α-dependence. The inclusion of the initial 3N in-
teraction again generates an α-dependence of about 10 MeV
for 16O. Note that the induced 4N (and higher) contributions
that are needed to compensate the α-dependence for 16O reach
about half the size of the total 3N contribution in the SRG-
transformed Hamiltonian. This is evidence that the hierarchy
of the many-body forces in chiral EFT may not be preserved
by the SRG transformation.
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range of flow parameters (for details see Fig. 1).

initial NN interaction are negligible in the α-range considered
here, indicating that the NN+3N-induced Hamiltonian is uni-
tarily equivalent to the initial NN Hamiltonian. The extrapo-
lated ground-state energies for different α are summarized in
Tab. I.
By including the initial chiral 3N interaction, i.e., by using

the NN+3N-full Hamiltonian, the ground-state energies are
lowered and are in good agreement with experiment for both,
4He and 6Li. As for the NN+3N-induced there is no sizable
α-dependence in the range considered here. We conclude that
induced 3N terms originating from the initial NN interaction
are important, but that induced 4N (and higher) terms are not
relevant for light p-shell nuclei, since the ground-state ener-
gies obtained with the NN+3N-induced and the NN+3N-full
Hamiltonian are practically α-independent.
This picture changes if we consider nuclei in the upper p-

shell. In Fig. 2 we show the first accurate ab initio calcula-

TABLE I: Summary of Nmax-extrapolated IT-NCSMground-state en-
ergies in MeV for !Ω = 20MeV (see text).

α [fm4] 4He 6Li 12C 16O
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FIG. 3: (color online) Nmax-extrapolated ground-state energies of 4He
and 16O as function of the flow parameter α for the NN-only (•), the
NN+3N-induced ( !), and the NN+3N-full Hamiltonian (").

tions for the ground states of 12C and 16O starting from chiral
NN+3N interactions. By combining the IT-NCSM with the
JT -coupled storage scheme for the 3N matrix elements we
are able to reach model spaces up to Nmax = 12 for the upper
p-shell at moderate computational cost. Previously, even the
most extensive NCSM calculations including full 3N interac-
tions were limited to Nmax = 8 in this regime [16]. As evident
from the Nmax-dependence of the ground-state energies, this
increase in Nmax is vital for obtaining precise extrapolations.
The general pattern for 12C and 16O is similar to the light

p-shell nuclei: The NN-only Hamiltonian exhibits a severe
α-dependence indicating sizable induced 3N contributions.
Their inclusion in the NN+3N-induced Hamiltonian leads to
ground-state energies that are practically independent of α,
confirming that induced 4N contributions are irrelevant when
starting from the NN interaction only. Therefore, the NN+3N-
induced results can be considered equivalent to a solution for
the initial NN interaction. The 16O binding energy per nucleon
of 7.48(4)MeV is in good agreement with a recent coupled-
cluster Λ-CCSD(T) result of 7.56MeV for the ‘bare’ chiral
NN interaction [17].
In contrast to light nuclei the ground-state energies of 12C

and 16O obtained with the NN+3N-full Hamiltonian do show
a significant α-dependence, as evident from Fig. 2(c) and (f).
The inclusion of the initial chiral 3N interaction does induce
4N contributions whose omission leads to the α-dependence.
A direct comparison of the α-dependence of the extrapo-

lated ground-state energies for 4He and 16O is presented in
Fig. 3. For both nuclei, the NN-only Hamiltonian exhibits
a sizable variation of the ground-state energies of about 25
MeV (0.7 MeV) for 16O (4He) in the range from α = 0.04 fm4
to 0.16 fm4. The inclusion of the induced 3N terms elimi-
nates this α-dependence. The inclusion of the initial 3N in-
teraction again generates an α-dependence of about 10 MeV
for 16O. Note that the induced 4N (and higher) contributions
that are needed to compensate the α-dependence for 16O reach
about half the size of the total 3N contribution in the SRG-
transformed Hamiltonian. This is evidence that the hierarchy
of the many-body forces in chiral EFT may not be preserved
by the SRG transformation.
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FIG. 2: (color online) IT-NCSM ground-state energies for 12C and
16O as function of Nmax for the three types of Hamiltonians and a
range of flow parameters (for details see Fig. 1).

initial NN interaction are negligible in the α-range considered
here, indicating that the NN+3N-induced Hamiltonian is uni-
tarily equivalent to the initial NN Hamiltonian. The extrapo-
lated ground-state energies for different α are summarized in
Tab. I.
By including the initial chiral 3N interaction, i.e., by using

the NN+3N-full Hamiltonian, the ground-state energies are
lowered and are in good agreement with experiment for both,
4He and 6Li. As for the NN+3N-induced there is no sizable
α-dependence in the range considered here. We conclude that
induced 3N terms originating from the initial NN interaction
are important, but that induced 4N (and higher) terms are not
relevant for light p-shell nuclei, since the ground-state ener-
gies obtained with the NN+3N-induced and the NN+3N-full
Hamiltonian are practically α-independent.
This picture changes if we consider nuclei in the upper p-

shell. In Fig. 2 we show the first accurate ab initio calcula-

TABLE I: Summary of Nmax-extrapolated IT-NCSMground-state en-
ergies in MeV for !Ω = 20MeV (see text).

α [fm4] 4He 6Li 12C 16O
NN 0.05 -28.08(2) -31.5(2) -99.1(6) -161.0(2)
only 0.0625 -28.25(1) -31.8(1) -101.4(3) -164.9(6)

0.08 -28.38(1) -32.2(1) -103.7(2) -170.2(4)
NN+ 0.05 -25.33(1) -27.7(2) -76.9(2) -119.5(3)
3N-ind. 0.0625 -25.34(1) -27.6(2) -77.2(1) -119.7(6)

0.08 -25.34(1) -27.6(1) -77.4(2) -119.5(2)
NN+ 0.05 -28.45(3) -31.8(2) -96.1(4) -143.7(2)
3N-full 0.0625 -28.45(1) -31.8(1) -96.8(3) -145.6(2)

0.08 -28.46(1) -31.8(1) -97.6(1) -147.8(1)
exp. -28.30 -31.99 -92.16 -127.62
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FIG. 3: (color online) Nmax-extrapolated ground-state energies of 4He
and 16O as function of the flow parameter α for the NN-only (•), the
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tions for the ground states of 12C and 16O starting from chiral
NN+3N interactions. By combining the IT-NCSM with the
JT -coupled storage scheme for the 3N matrix elements we
are able to reach model spaces up to Nmax = 12 for the upper
p-shell at moderate computational cost. Previously, even the
most extensive NCSM calculations including full 3N interac-
tions were limited to Nmax = 8 in this regime [16]. As evident
from the Nmax-dependence of the ground-state energies, this
increase in Nmax is vital for obtaining precise extrapolations.
The general pattern for 12C and 16O is similar to the light

p-shell nuclei: The NN-only Hamiltonian exhibits a severe
α-dependence indicating sizable induced 3N contributions.
Their inclusion in the NN+3N-induced Hamiltonian leads to
ground-state energies that are practically independent of α,
confirming that induced 4N contributions are irrelevant when
starting from the NN interaction only. Therefore, the NN+3N-
induced results can be considered equivalent to a solution for
the initial NN interaction. The 16O binding energy per nucleon
of 7.48(4)MeV is in good agreement with a recent coupled-
cluster Λ-CCSD(T) result of 7.56MeV for the ‘bare’ chiral
NN interaction [17].
In contrast to light nuclei the ground-state energies of 12C

and 16O obtained with the NN+3N-full Hamiltonian do show
a significant α-dependence, as evident from Fig. 2(c) and (f).
The inclusion of the initial chiral 3N interaction does induce
4N contributions whose omission leads to the α-dependence.
A direct comparison of the α-dependence of the extrapo-

lated ground-state energies for 4He and 16O is presented in
Fig. 3. For both nuclei, the NN-only Hamiltonian exhibits
a sizable variation of the ground-state energies of about 25
MeV (0.7 MeV) for 16O (4He) in the range from α = 0.04 fm4
to 0.16 fm4. The inclusion of the induced 3N terms elimi-
nates this α-dependence. The inclusion of the initial 3N in-
teraction again generates an α-dependence of about 10 MeV
for 16O. Note that the induced 4N (and higher) contributions
that are needed to compensate the α-dependence for 16O reach
about half the size of the total 3N contribution in the SRG-
transformed Hamiltonian. This is evidence that the hierarchy
of the many-body forces in chiral EFT may not be preserved
by the SRG transformation.
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initial NN interaction are negligible in the α-range considered
here, indicating that the NN+3N-induced Hamiltonian is uni-
tarily equivalent to the initial NN Hamiltonian. The extrapo-
lated ground-state energies for different α are summarized in
Tab. I.
By including the initial chiral 3N interaction, i.e., by using

the NN+3N-full Hamiltonian, the ground-state energies are
lowered and are in good agreement with experiment for both,
4He and 6Li. As for the NN+3N-induced there is no sizable
α-dependence in the range considered here. We conclude that
induced 3N terms originating from the initial NN interaction
are important, but that induced 4N (and higher) terms are not
relevant for light p-shell nuclei, since the ground-state ener-
gies obtained with the NN+3N-induced and the NN+3N-full
Hamiltonian are practically α-independent.
This picture changes if we consider nuclei in the upper p-

shell. In Fig. 2 we show the first accurate ab initio calcula-

TABLE I: Summary of Nmax-extrapolated IT-NCSMground-state en-
ergies in MeV for !Ω = 20MeV (see text).

α [fm4] 4He 6Li 12C 16O
NN 0.05 -28.08(2) -31.5(2) -99.1(6) -161.0(2)
only 0.0625 -28.25(1) -31.8(1) -101.4(3) -164.9(6)

0.08 -28.38(1) -32.2(1) -103.7(2) -170.2(4)
NN+ 0.05 -25.33(1) -27.7(2) -76.9(2) -119.5(3)
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tions for the ground states of 12C and 16O starting from chiral
NN+3N interactions. By combining the IT-NCSM with the
JT -coupled storage scheme for the 3N matrix elements we
are able to reach model spaces up to Nmax = 12 for the upper
p-shell at moderate computational cost. Previously, even the
most extensive NCSM calculations including full 3N interac-
tions were limited to Nmax = 8 in this regime [16]. As evident
from the Nmax-dependence of the ground-state energies, this
increase in Nmax is vital for obtaining precise extrapolations.
The general pattern for 12C and 16O is similar to the light

p-shell nuclei: The NN-only Hamiltonian exhibits a severe
α-dependence indicating sizable induced 3N contributions.
Their inclusion in the NN+3N-induced Hamiltonian leads to
ground-state energies that are practically independent of α,
confirming that induced 4N contributions are irrelevant when
starting from the NN interaction only. Therefore, the NN+3N-
induced results can be considered equivalent to a solution for
the initial NN interaction. The 16O binding energy per nucleon
of 7.48(4)MeV is in good agreement with a recent coupled-
cluster Λ-CCSD(T) result of 7.56MeV for the ‘bare’ chiral
NN interaction [17].
In contrast to light nuclei the ground-state energies of 12C

and 16O obtained with the NN+3N-full Hamiltonian do show
a significant α-dependence, as evident from Fig. 2(c) and (f).
The inclusion of the initial chiral 3N interaction does induce
4N contributions whose omission leads to the α-dependence.
A direct comparison of the α-dependence of the extrapo-

lated ground-state energies for 4He and 16O is presented in
Fig. 3. For both nuclei, the NN-only Hamiltonian exhibits
a sizable variation of the ground-state energies of about 25
MeV (0.7 MeV) for 16O (4He) in the range from α = 0.04 fm4
to 0.16 fm4. The inclusion of the induced 3N terms elimi-
nates this α-dependence. The inclusion of the initial 3N in-
teraction again generates an α-dependence of about 10 MeV
for 16O. Note that the induced 4N (and higher) contributions
that are needed to compensate the α-dependence for 16O reach
about half the size of the total 3N contribution in the SRG-
transformed Hamiltonian. This is evidence that the hierarchy
of the many-body forces in chiral EFT may not be preserved
by the SRG transformation.
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⦿ Example: no-core shell model calculations of 4He and 6Li ground-state energies

SRG
 evolution

[Roth et al. 2011]



⦿ From original Hamiltonian (normal-ordered w.r.t. the particle vacuum)…
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⦿ Define density matrix & occupation numbers

… to a Hamiltonian normal-ordered w.r.t. to a reference Slater determinant
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➝  Discard residual 3N operator

Large part of the original 3N transferred 
into effective lower-rank operators
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Normal-ordered 2-body approximation (NO2B)

➝  Discard residual 3N operator

⦿ Benchmarked in light nuclei

showing deviations below 1%. For! ¼ 0:08 fm4 the NO2B
approximation yields "310ð2ÞMeV and "472ð1ÞMeV
as compared to "309ð1ÞMeV and "468ð1ÞMeV for the
Nmax¼ 8 ground-state energy with the exact NN þ
3N-induced and NN þ 3N-full Hamiltonians, respectively.

For a comprehensive picture of its anatomy, we analyze
the expectation values of the 3N interaction at different
levels of the NOnB approximation using IT-NCSM eigen-
states obtained with the exact 3N interaction for 4He, 16O,
and 40Ca for fixed Nmax. Figure 2 summarizes these expec-
tation values of the 3N interaction for a set of NN þ
3N-induced and NN þ 3N-full Hamiltonians. For 16O
and 40Ca a similar pattern emerges: The NO2B approxi-
mation does reproduce the expectation value of the exact
3N interaction very well, both for the NN þ 3N-induced
and the NN þ 3N-full Hamiltonian. The pattern observed
for the sequence of NOnB approximations is different for
both types of Hamiltonians. For NN þ 3N-induced the 1B
and 2B contributions of the normal-ordered Hamiltonian
have opposite sign, with the 1B contribution being signifi-
cantly larger, whereas for the NN þ 3N-full Hamiltonian
the 1B and 2B contributions are both attractive and of
similar size. In all cases the 0B contribution is the largest
and overestimates the exact 3N expectation value. For 4He
the pattern is different. The 0B term does not provide the
largest contribution and underestimates the 3N expectation
value. The signs and relative sizes of the 1B and 2B terms
again depend on the Hamiltonian, and the NO2B approxi-
mation still shows a sizable deviation from the exact 3N
expectation value, contrary to the single example presented
in Ref. [8].

This case study shows that there is no universal pattern
and no hierarchy in the individual NOnB contributions.
The size of the individual terms and also the deviation of
the NO2B approximation from the exact 3N result depends
on the Hamiltonian, the nucleus, and the oscillator fre-
quency. Nonetheless, the 3N expectation values in Fig. 2
and the ground-state energies in Fig. 1 demonstrate that the
NO2B approximation works very well beyond the lightest
nuclei.
Application in coupled-cluster theory.—After validating

the NO2B approximation, we are now applying it in ground-
state calculations for heavier closed-shell nuclei in the
framework of the coupled-cluster method. Coupled-cluster
theory is a natural framework since normal-ordering of the
Hamiltonian with respect to a reference state is inherent to
the formulation of the approach. We have developed an
efficient coupled-cluster code using the J-coupled scheme
discussed in Ref. [23], which enables us to go to very large
model spaces. We limit ourselves to coupled cluster with
singles and doubles excitations (CCSD), which has been
shown to be a good approximation for soft SRG-evolved
interactions [23]. An additional approximation present in
the CCSD calculations for technical reasons is a truncation
of the 3N matrix elements entering the NO2B to harmonic-
oscillator principal quantum numbers e1 þ e2 þ e3 &
E3max¼ 14.
In a first step, we confront the CCSD results for 16O

with the previous IT-NCSM results, both using the NO2B
approximation. Figure 3 shows the convergence of the
ground-state energies in both methods using the NN þ
3N-induced and NN þ 3N-full Hamiltonian. We observe
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FIG. 2 (color online). Anatomy of the NOnB approximation of
the ground-state energies of 4He, 16O, and 40Ca. The bar charts
show the expectation values of the 3N interaction computed at
different levels of the normal-ordering approximation, i.e.,
NO0B, NO1B, NO2B, and exact 3N. We employ the NN þ
3N-induced and NN þ 3N-full Hamiltonians, each with two
values of ! (see labels). We use the eigenstates obtained for
the exact 3N interaction in Nmax¼ 10 for 4He and 16O and
Nmax¼ 8 for 40Ca, all at @! ¼ 20 MeV.
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showing deviations below 1%. For! ¼ 0:08 fm4 the NO2B
approximation yields "310ð2ÞMeV and "472ð1ÞMeV
as compared to "309ð1ÞMeV and "468ð1ÞMeV for the
Nmax¼ 8 ground-state energy with the exact NN þ
3N-induced and NN þ 3N-full Hamiltonians, respectively.

For a comprehensive picture of its anatomy, we analyze
the expectation values of the 3N interaction at different
levels of the NOnB approximation using IT-NCSM eigen-
states obtained with the exact 3N interaction for 4He, 16O,
and 40Ca for fixed Nmax. Figure 2 summarizes these expec-
tation values of the 3N interaction for a set of NN þ
3N-induced and NN þ 3N-full Hamiltonians. For 16O
and 40Ca a similar pattern emerges: The NO2B approxi-
mation does reproduce the expectation value of the exact
3N interaction very well, both for the NN þ 3N-induced
and the NN þ 3N-full Hamiltonian. The pattern observed
for the sequence of NOnB approximations is different for
both types of Hamiltonians. For NN þ 3N-induced the 1B
and 2B contributions of the normal-ordered Hamiltonian
have opposite sign, with the 1B contribution being signifi-
cantly larger, whereas for the NN þ 3N-full Hamiltonian
the 1B and 2B contributions are both attractive and of
similar size. In all cases the 0B contribution is the largest
and overestimates the exact 3N expectation value. For 4He
the pattern is different. The 0B term does not provide the
largest contribution and underestimates the 3N expectation
value. The signs and relative sizes of the 1B and 2B terms
again depend on the Hamiltonian, and the NO2B approxi-
mation still shows a sizable deviation from the exact 3N
expectation value, contrary to the single example presented
in Ref. [8].

This case study shows that there is no universal pattern
and no hierarchy in the individual NOnB contributions.
The size of the individual terms and also the deviation of
the NO2B approximation from the exact 3N result depends
on the Hamiltonian, the nucleus, and the oscillator fre-
quency. Nonetheless, the 3N expectation values in Fig. 2
and the ground-state energies in Fig. 1 demonstrate that the
NO2B approximation works very well beyond the lightest
nuclei.
Application in coupled-cluster theory.—After validating

the NO2B approximation, we are now applying it in ground-
state calculations for heavier closed-shell nuclei in the
framework of the coupled-cluster method. Coupled-cluster
theory is a natural framework since normal-ordering of the
Hamiltonian with respect to a reference state is inherent to
the formulation of the approach. We have developed an
efficient coupled-cluster code using the J-coupled scheme
discussed in Ref. [23], which enables us to go to very large
model spaces. We limit ourselves to coupled cluster with
singles and doubles excitations (CCSD), which has been
shown to be a good approximation for soft SRG-evolved
interactions [23]. An additional approximation present in
the CCSD calculations for technical reasons is a truncation
of the 3N matrix elements entering the NO2B to harmonic-
oscillator principal quantum numbers e1 þ e2 þ e3 &
E3max¼ 14.
In a first step, we confront the CCSD results for 16O

with the previous IT-NCSM results, both using the NO2B
approximation. Figure 3 shows the convergence of the
ground-state energies in both methods using the NN þ
3N-induced and NN þ 3N-full Hamiltonian. We observe
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FIG. 2 (color online). Anatomy of the NOnB approximation of
the ground-state energies of 4He, 16O, and 40Ca. The bar charts
show the expectation values of the 3N interaction computed at
different levels of the normal-ordering approximation, i.e.,
NO0B, NO1B, NO2B, and exact 3N. We employ the NN þ
3N-induced and NN þ 3N-full Hamiltonians, each with two
values of ! (see labels). We use the eigenstates obtained for
the exact 3N interaction in Nmax¼ 10 for 4He and 16O and
Nmax¼ 8 for 40Ca, all at @! ¼ 20 MeV.
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○ 1-3% error

○ Comparable to other errors

[Roth et al. 2012]



Importance truncation

⦿ Not all matrix elements of H are equally relevant

○ Nmax cuts might not be the most efficient way of selecting important entries

⦿ Importance truncation: prior to diagonalisation

1. Estimate the size of each entry upon a given criterion

2. Discard irrelevant entries (i.e., make the matrix even more sparse)

⦿ Required features:

○ Estimate has be done with a cheap method

- Typical tool of choice: many-body perturbation theory

○ In the limit of null threshold one must recover the original (exact) problem

- Smooth behaviour desirable in order to perform extrapolations

○ Is there a way of discarding a priori the most irrelevant entries for a given Nmax?

➪ Construct importance-truncated space from all basis states having 
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■ repeat calculations for a
sequence of importance
thresholds κmin

■ observables show smooth
threshold dependence and
systematically approach the
full NCSM limit

■ use a posteriori extrapola-
tion κmin → 0 of observables to
account for effect of excluded
configurations

■ uncertainty quantification
via set of extrapolations
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Roth, PRC 79, 064324 (2009) 

○ Smooth threshold dependence 

Importance Truncated NCSM

9

Roth, PRC 79, 064324 (2009); PRL 99, 092501 (2007)

■ converged NCSM calcula-
tions essentially restricted
to lower/mid p-shell

■ full Nmx = 10 calculation
for 16O very difficult
(basis dimension > 1010)
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Importance Truncation

! converged NCSM calculations 
limited to lower & mid p-shell 
nuclei 

! example: full Nmax=10 calculation 
for 16O would be very difficult, 
basis dimension D > 1010
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Importance 
Truncation 

reduce model space to the 
relevant basis states using an a 
priori importance measure 

derived from MBPT  

Roth, PRC 79, 064324 (2009) 

○ Extrapolation to un-truncated result

○ Uncertainty quantification from fit

○ Benchmarks possible for for small Nmax

[Roth 2009]



Applications: oxygen isotopes

truncation of the many-body expansion, while the effect of
theNO2Bapproximation is found to be independent of!SRG.

For !3N ¼ 350 MeV=c we do not expect significant
induced 4N interactions [27]. As !SRG is reduced, we
capture additional repulsive 3N strength in matrix elements
with e1 þ e2 þ e3 # E3max. We also speed up the conver-
gence of the many-body expansion and reduce the error due
to the MR-IM-SRG(2) truncation, but for the resolution
scales considered here, this effect is already saturated. In
total, we find a slight artificial increase of the ground-state
energies as we lower !SRG [13].

For our standard choice !3N ¼ 400 MeV=c, effects
from omitted 4N interactions, the E3max cut, and the
many-body truncation cancel, and the !SRG dependence
of the energies in Fig. 2 is extremely weak [13]. The
omission of 4N interactions becomes the dominant source
of uncertainty as we increase!3N to 450 MeV=c, resulting
in an enhanced !SRG dependence of the ground-state ener-
gies of the heavier oxygen isotopes. This is consistent with
the even stronger !SRG dependence for!3N ¼ 500 MeV=c
observed in Refs. [23,26,27].

To assess the quality of our MR-IM-SRG(2) ground-
state energies, we compare them to results from the
IT-NCSM, which yields the exact NCSM results within
quantified uncertainties from the importance truncation
[26,32]. In the IT-NCSM calculations, we use the full
3N interaction without the NO2B approximation, and the
E3max cut is naturally compatible with the IT-NCSM
model-space truncation [13]. In Fig. 3 we show the
convergence of the oxygen ground-state energies for the
NN þ 3N-induced and NN þ 3N-full Hamiltonians as a
function of Nmax, along with exponential fits which ex-
trapolate Nmax! 1 [26,32,33]. With the exception of 26O,
all isotopes converge well, and the uncertainties of the
threshold and model spaces truncations of the IT-NCSM
results are typically about 1 MeV. For 26O, the rate of
convergence is significantly worse, which is expected due
to the resonance nature of this ground state.

The neutron-rich oxygen isotopes are the heaviest nuclei
studied so far in the IT-NCSMwith full 3N interactions. For
26O, the computation of the complete Nmax sequence shown
in Fig. 3 requires about 200 000 CPU hours. In contrast, a
corresponding sequence of single-particle basis sizes in the
MR-IM-SRG requires only about 3000 CPU hours on a
comparable system.Overall, themethod scales polynomially
with OðN6Þto larger basis sizes N, which makes it ideally
suited for the description ofmedium- and heavy-mass nuclei.

In Fig. 4, we compare the MR-IM-SRG(2) and
IT-NCSM ground-state energies of the oxygen isotopes, for
the NN þ 3N-induced and NN þ 3N-full Hamiltonians
with !SRG ¼ 1:88 fm&1 to experiment. For the latter, the
overall agreement between the twovery differentmany-body
approaches and experiment is striking: Except for slightly
larger deviations in 12O and 26O, we reproduce experimental
binding energies within 2–3 MeV. This is a remarkable

demonstration of the predictive power of current chiral
NN þ 3N Hamiltonians, at least for ground-state energies.
For further confirmation, we perform CC calculations with
singles and doubles (CCSD), as well as perturbative triples
[!-CCSD(T)] [15,22,34,35] for oxygen isotopes with sub-
shell closures. Using the same Hamiltonians in the NO2B
approximation, the MR-IM-SRG energies are bracketed
by the CC results, and similar to the !-CCSD(T) values,
consistentwith the closed-shell results discussed inRef. [13].
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FIG. 3 (color online). IT-NCSM ground-state energies of the
even oxygen isotopes for the NN þ 3N-induced (a) and NN þ
3N-full Hamiltonians (b) at !SRG ¼ 1:88 fm&1. Solid lines in-
dicate the energy extrapolation based on Nmax¼ 8–12 data;
dotted lines guide the eye for smaller Nmax. Uncertainties due
to the importance truncation are smaller than the symbols used to
represent the data. All energies are obtained at optimal @".
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FIG. 4 (color online). Oxygen ground-state energies for the
NN þ 3N-induced (a) and NN þ 3N-full (b) Hamiltonian with
!3N ¼ 400 MeV=c. MR-IM-SRG(2), CCSD, and !-CCSD(T)
results are obtained at optimal @", using 15 major oscillator
shells and E3max¼ 14. The IT-NCSM energies are extrapolated
to infinite model space. Experimental values are indicated by
black bars [28,36].
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truncation of the many-body expansion, while the effect of
theNO2Bapproximation is found to be independent of!SRG.

For !3N ¼ 350 MeV=c we do not expect significant
induced 4N interactions [27]. As !SRG is reduced, we
capture additional repulsive 3N strength in matrix elements
with e1 þ e2 þ e3 # E3max. We also speed up the conver-
gence of the many-body expansion and reduce the error due
to the MR-IM-SRG(2) truncation, but for the resolution
scales considered here, this effect is already saturated. In
total, we find a slight artificial increase of the ground-state
energies as we lower !SRG [13].

For our standard choice !3N ¼ 400 MeV=c, effects
from omitted 4N interactions, the E3max cut, and the
many-body truncation cancel, and the !SRG dependence
of the energies in Fig. 2 is extremely weak [13]. The
omission of 4N interactions becomes the dominant source
of uncertainty as we increase!3N to 450 MeV=c, resulting
in an enhanced !SRG dependence of the ground-state ener-
gies of the heavier oxygen isotopes. This is consistent with
the even stronger !SRG dependence for!3N ¼ 500 MeV=c
observed in Refs. [23,26,27].

To assess the quality of our MR-IM-SRG(2) ground-
state energies, we compare them to results from the
IT-NCSM, which yields the exact NCSM results within
quantified uncertainties from the importance truncation
[26,32]. In the IT-NCSM calculations, we use the full
3N interaction without the NO2B approximation, and the
E3max cut is naturally compatible with the IT-NCSM
model-space truncation [13]. In Fig. 3 we show the
convergence of the oxygen ground-state energies for the
NN þ 3N-induced and NN þ 3N-full Hamiltonians as a
function of Nmax, along with exponential fits which ex-
trapolate Nmax! 1 [26,32,33]. With the exception of 26O,
all isotopes converge well, and the uncertainties of the
threshold and model spaces truncations of the IT-NCSM
results are typically about 1 MeV. For 26O, the rate of
convergence is significantly worse, which is expected due
to the resonance nature of this ground state.

The neutron-rich oxygen isotopes are the heaviest nuclei
studied so far in the IT-NCSMwith full 3N interactions. For
26O, the computation of the complete Nmax sequence shown
in Fig. 3 requires about 200 000 CPU hours. In contrast, a
corresponding sequence of single-particle basis sizes in the
MR-IM-SRG requires only about 3000 CPU hours on a
comparable system.Overall, themethod scales polynomially
with OðN6Þto larger basis sizes N, which makes it ideally
suited for the description ofmedium- and heavy-mass nuclei.

In Fig. 4, we compare the MR-IM-SRG(2) and
IT-NCSM ground-state energies of the oxygen isotopes, for
the NN þ 3N-induced and NN þ 3N-full Hamiltonians
with !SRG ¼ 1:88 fm&1 to experiment. For the latter, the
overall agreement between the twovery differentmany-body
approaches and experiment is striking: Except for slightly
larger deviations in 12O and 26O, we reproduce experimental
binding energies within 2–3 MeV. This is a remarkable

demonstration of the predictive power of current chiral
NN þ 3N Hamiltonians, at least for ground-state energies.
For further confirmation, we perform CC calculations with
singles and doubles (CCSD), as well as perturbative triples
[!-CCSD(T)] [15,22,34,35] for oxygen isotopes with sub-
shell closures. Using the same Hamiltonians in the NO2B
approximation, the MR-IM-SRG energies are bracketed
by the CC results, and similar to the !-CCSD(T) values,
consistentwith the closed-shell results discussed inRef. [13].
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dicate the energy extrapolation based on Nmax¼ 8–12 data;
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represent the data. All energies are obtained at optimal @".
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FIG. 4 (color online). Oxygen ground-state energies for the
NN þ 3N-induced (a) and NN þ 3N-full (b) Hamiltonian with
!3N ¼ 400 MeV=c. MR-IM-SRG(2), CCSD, and !-CCSD(T)
results are obtained at optimal @", using 15 major oscillator
shells and E3max¼ 14. The IT-NCSM energies are extrapolated
to infinite model space. Experimental values are indicated by
black bars [28,36].
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⦿ First ab initio calculations with NN+3N chiral interactions along the oxygen chain

○ Converged results achieved up to 24O

○ Unbound 26O harder to compute in HO basis

○ Role of “genuine” 3N forces evident
[Hergert et al. 2013]
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