

INFN and Università di Milano for the ATLAS Collaboration

- Stato corrente della ricostruzione di E_T^{miss}
 - Milano + Frascati
 - MET_RefFinal scelta consigliata per il reprocessing d'autunno
- Osservazione di $W \rightarrow \tau v$
 - Milano + Bonn
 - **CONF note in approvazione**: 0.546 pb⁻¹, 78 eventi, 22.9 fondo)
 - Misura della sezione d'urto sul campione 2010
 - Canale poco coperto in ATLAS: aiuto benvenuto!
- Misura di Z→ττ
 - Milano + Friburg + Pennsylvania + Cracovia+Washington
 - Prospettive di osservazione su 50 pb⁻¹
 - Ci sono già le prima indicazioni
 - Canale di base per calibrazione delle scale di τ -jet e E_T^{miss}
- Entrambe le misure permettono di certificare la capacità di ATLAS di identificare il τ:
 - VBF per h $\rightarrow \tau\tau$, H/A $\rightarrow \tau\tau$, H[±] $\rightarrow \tau\nu$

People in Italy involved in E_T^{miss} studies:

- MILANO: D. Cavalli, C. Pizio, S. Resconi, R. Simoniello
 → Develop/implement/maintain MissingET package for E_T^{miss} reconstruction and calibration. Commissioning of E_T^{miss} in data and study of performance
- FRASCATI: M. Antonelli, M. Testa
 - → Energy flow calibration of TC outside objects

CONF Notes on E_T^{miss} in data:

- ATL-CONF-2010-008: **E**_T^{miss} **Performance at 0.9 and 2.36 TeV** (co-editor D. Cavalli)
- ATL-CONF-2010-038: **E**_T^{miss} **Performance at 7 TeV** (co-editor S. Resconi)
- ATL-CONF-2010-057: Calibrated E_T^{miss} Performance at 7 TeV (co-editor D. Cavalli)

E_T^{miss} commissioning

- $E_{\rm T}{}^{\rm miss}$ commissioning in steps of increasing complexity:
- 1) E_T^{miss} from cells in TopoClusters at EM Scale: MET_Topo
- 2) Calibrated E_T^{miss} applying Local Calibration Weights (LCW) to all TopoCluster cells: MET_LocHadTopo
- 3) Add Muon term:

MET_LocHadTopo +MET_MuonBoy - MET_RefMuon_track

Now it is time to definitively move to the final calibration step, the Refined Calibration

Release 16 status and plans

Main improvements:

- Jet contribution split in **SoftJet** (7< p_T <20) and **RefJet** (p_T >20)
- Eflow calibration: use track p_T removing the associated clusters and add tracks which do not seed a TopoCluster
- New default calibration for MET_RefFinal in release 16:
 - Electrons properly calibrated with CalibHit
 - Jets with $p_T > 20 \text{GeV} : \mathbf{LCW} + \mathbf{JES}(\mathbf{NI})$
 - Double counting problem: JES includes **showering correction** but E_T^{miss} already uses **all** calorimeter cells
 - Increase cone size: from AntiKt4 to AntiKt6 to reduce double counting effect
 - Factorisation of response and showering
 - \rightarrow will test using response without showering
 - Jets with 7 GeV < p_T < 20 GeV and Taus: LCW
 - TopoClusters outside reconstructed objects: Eflow+LCW
 - to be fully validated in different physics analyses:
 evaluate systematic on jets (LCW+JES) and MET_CellOut (LCW+Eflow)
- **MET_RefFinal_EM** also available to allow the use of the present default for jets: EM+EMJES + systematics

Osservazione di W→τv

Persone coinvolte:

MILANO: A. Andreazza, L. Dell'Asta
 in collaborazione con J. Kroseberg e G. Nunes-Hanninger (uni Bonn)

CONF Notes on data:

- ATLAS-CONF-2010-059: Reconstruction of hadronic tau candidates in QCD events at ATLAS with 7 TeV proton-proton collisions
- ATLAS-CONF-2010-086: Tau Reconstruction and Identification Performance in ATLAS
- ATL-COM-CONF-2010-057: **Observation of W→τv Decays with the ATLAS Experiment** (co-editor A. Andreazza)

Selection

- **Data sample** 546 nb⁻¹ :
 - DESD_MET, up to period D2
 - GRL (tau + CaloOnlyMET)
 - Trigger: EF_tauNoCut_hasTrk6_EFxe15_noMu
- Event cleaning
 - at least one vertex with Ntrk≥4
 - jet vetoes: require no jet in the event with
 - ,,jet_isGood"<2 (AntiKt4H1TopoJets)
 - $p_T > 20$ GeV, and $1.3 < |\eta| < 1.7$
 - $p_T > 20 \text{ GeV}$ and $min(\Delta\phi(jet,MET)) < 0.5$
 - Remove events with fake E_{Tmiss}
- Event signature
 - E_{Tmiss}>30 GeV (LocalHadTopo)
 - τ -jet with tight identification and $20 < p_T < 60$
- Lepton veto:
 - no loose electron with $p_T > 5 \text{ GeV}$
 - no combined muon with $p_T > 5 \text{ GeV}$
 - additional electron veto in τ candidate

• Final QCD background rejection

ABCD method: signal contamination

Region	Α	В	С	D	
Data	78	607	254	7107	$c_i = \frac{\mathbf{N}_{sig}^i + \mathbf{N}_{EW}^i}{\mathbf{N}^A + \mathbf{N}^A}$
$W ightarrow au_{ m h} oldsymbol{ u}_{ au}$	55.3±1.4	39.5±1.2	71.0 ± 1.6	54.2 ± 1.4	$\mathbf{N}_{sig} + \mathbf{N}_{EW}$
EW	11.8 ± 0.4	6.5 ± 0.2	44.5 ± 0.7	22.1 ± 0.5	from MC
c_i		$0.69{\pm}0.02$	$1.72{\pm}0.05$	$1.14{\pm}0.03$	

Corrections must be applied:

$$N_{QCD}^{A} = (N^{B} - c_{B}(N^{A} - N_{QCD}^{A})) \frac{N^{C} - c_{C}(N^{A} - N_{QCD}^{A})}{N^{D} - c_{D}(N^{A} - N_{QCD}^{A})}$$

QCD background events in region A: $N^{A}_{QCD} = 11.1 \pm 2.3$ (stat.)

Observed excess of events: 55.1 ± 10.5 (stat.)

Correlations in ABCD method

correlation = dependence of E_T^{miss} significance on τ -ID

- Many test performed:
 - $-\tau p_T$ dependence
 - number of tracks
 - medium vs. tight τ -ID
 - variation of E_T^{miss} significance cut
- The latter is, by far, the most relevant:
 - due to disagreement in shape at E_T^{miss} significance ≈ 5
 - 29% uncertainty on QCD background

Are these real taus?

□ Distributions for **TauID variables** in regions AC (E_T^{miss} significance > 6)

stituto Nazionale li Fisica Nucleare

QCD background extracted from regions BD (E_T^{miss} significance < 6)

 \Box Distributions for signal region A (E_T^{miss} significance > 6 && tight tau ID)

 \Box QCD background extracted from regions C (E_T^{miss} significance < 6 && loose tau ID) and normalized to the number of events expected in region A.

Systematics and results

	signal	EW background	QCD background			
Central values [events]	55.3	11.8	11.1			
Statistical error [events]	± 1.4	± 0.4	± 2.3			
Systematic uncertainties						
Theoretical cross section	$\pm 5\%$	$\pm 5\%$	_			
Luminosity	± 11	$\pm 11\%$	_			
Energy scale	$\pm 21\%$	$\pm 14\%$	_			
Electron veto	_	$\pm 11\%$	_			
Muon veto	_	$\pm 16\%$	-			
Pile-up	± 1	$\pm 0.2\%$	_			
Monte Carlo model	$\pm 16\%$	$\pm 17\%$	—			
QCD background estimation	_	—	$\pm 29\%$			
Total systematic uncertainty [events]	± 16.1	± 3.7	± 3.2			
• Observed events: 78						
 QCD background 	$11.1 \pm 2.3 \pm 3.2$ events					
 EW background 	$11.8 \pm 0.4 \pm 3.7$ events					
 excess events 	$55.1 \pm 10.5 \pm 5.2$ events					
• Probability of excess due to background fluctuation is 2.2×10^{-9} (6.1 σ)						

Verso la misura della sezione d'urto

- Chiaramente una misura di calibrazione:
 - certificazione dell'identificazione dei τ
- La selezione basata su E_T^{miss} per l'analisi $W \rightarrow \tau_h v$ è estremamente sensibile alle incertezze sistematiche su E_T^{miss} and ΣE_T :
 - E_T^{miss} e la significanza sono i fattori limitanti per una misura della sezione d'urto: 26% sull'accettanza del segnale 29% sulla stima del fondo di QCD 22% sulla stima del fondo EW
 - Due possibilità per migliorare:
 - migliore MC tuning in modo da avere ΣE_T affidabile nel MC
 - ottenere un S/B sufficiente con τ -ID multivariata, invece della significanza di E_T^{miss}
- Altri argomenti su cui sarebbe utile un aiuto:
 - metodi alternativi per la stima del fondo di QCD
 - stima del fondo da W+getti
 - >80% del fondo da W \rightarrow µv è dato da getti + inefficienze nella riscostruzione dei µ
 - ~lo stesso per W \rightarrow ev dopo il veto sugli elettroni

• MILANO: D. Cavalli, S. Consonni, C. Pizio

→ in collaborazione con S. Kuhen (Uni Freiburg)

li Fisica Nuclear

Analisi Monte Carlo per 50 pb⁻¹

Gli eventi di segnale OS
Fondo QCD OS-SS simmetrico
Sottraendo SS: S/B = 3.5 ± 0.3

Per W → lv + jets OS > SS: si potrà
correggere (usando una regione di controllo)
In studio criteri per la riduzione del fondo Z

Ulteriore metodo di stima basato sulla
molteplicità di tracce

L'analisi sui dati reali (canale µ)

			Monte Carlo		di Fisica Nuc
	Data	Monte Carlo $Z \rightarrow \tau \tau$	all backgrounds	Data/MC	
			$+ Z \rightarrow \tau \tau$		
GRL	21424980	1303(3)	$1.5436(10) \times 10^{6}$	-	$\int C 2 - h - 1$
Collision candidate	10801572	1297(3)	$1.5406(10) \times 10^{6}$	-	J <i>L=</i> 3 pD ⁻¹
Trigger	221128	136.2(9)	203900(500)	121	
Cleaning	221108	136.0(9)	203800(500)	-	
Lepton selection	22176	81.6(7)	25100(100)	0.885(8)	
Lepton isolation	8025	74.2(7)	8670(60)	0.93(1)	
Lepton $p_{\rm T} < 40 { m ~GeV}$	8025	74.2(7)	8670(60)	0.93(1)	
τ -jet selection	70	10.7(3)	83(1)	0.8(1)	
$\Sigma \cos \Delta \phi > -0.15$	34	9.7(2)	34.7(8)	1.0(2)	
$m_{\rm T} < 50 { m ~GeV}$	32	9.5(2)	32.8(8)	1.0(2)	
Dilepton veto	31	9.4(2)	28.7(7)	1.1(2)	
1 or 3 tracks τ -jet	21	7.9(2)	14.9(4)	1.4(3)	
au-jet unit charge	21	7.8(2)	14.5(4)	1.4(3)	
Opposite sign	15	7.7(2)	19 1(4)	1.2(3)	
$m_{vis} [0, 200] {\rm GeV}$	15	(7.7(2))	(12.0(4))	1.2(3)	
m_{vis} [35, 75] GeV	12	1.2(2)	0.0(0)	1.3(4)	
$E_{\rm T}^{\rm miss} > 20 { m ~GeV}$	4	1.39(9)	1.8(1)	2(1)	
$\Delta \phi < 2.9$	2	0.64(6)	0.80(7)	3(2)	
$m_{inv} [0, 200] { m GeV}$	0	0.45(5)	0.47(5)	0	
m_{inv} [60, 150] GeV	0	0.44(5)	0.46(5)	0	

- Analisi preliminare un solo vertice, canale μ
- **Fattore di correzione** per il contributo QCD (data driven, notato in altre analisi)
- Accordo dati/MC indicativamente buono
- Indicazioni di osservazione

- Terminare gli studi per l'osservazione (conferenze invernali)
 - Vertex reweighting in progress
 - Nel gruppo si stanno studiando svariate tecniche data-driven complementari
 - Per valutare bene fondo e mantenere le sistematiche sotto controllo è necessaria più statistica
- Determinazione della scala di energia dei τ_{jet} con 50 pb⁻¹ (o meno?)
- Analisi di massa invariante a 7 TeV per ottenere maggior purezza e determinare la scala di energia trasversa mancante
- Misura della sezione d'urto

A/H $\rightarrow \tau \tau$, sensibilità per la scoperta già con 1 fb⁻¹ !

Conclusioni

- Stato corrente della ricostruzione di E_T^{miss}
 - Milano + Frascati
 - MET_RefFinal scelta consigliata per il reprocessing d'autunno
- Osservazione di $W \rightarrow \tau v$
 - Milano + Bonn
 - **CONF note in approvazione**: 0.546 pb⁻¹, 78 eventi, 22.9 fondo)
 - Misura della sezione d'urto sul campione 2010
 - Canale poco coperto in ATLAS: aiuto benvenuto!
- Misura di Z→ττ
 - Milano + Friburg + Pennsylvania + Cracovia+Washington
 - Prospettive di osservazione su 50 pb⁻¹
 - Ci sono già le prima indicazioni
 - Canale di base per calibrazione delle scale di τ -jet e E_T^{miss}
- Entrambe le misure permettono di certificare la capacità di ATLAS di identificare il τ:
 - VBF per h $\rightarrow \tau\tau$, H/A $\rightarrow \tau\tau$, H[±] $\rightarrow \tau\nu$

Refined E_T^{miss} : choice of best calibration

Outcome of Pisa Hadronic Calibration Workshop (Sep 2010)

 E_x^{miss} , E_y^{miss} Resolution scaled by the ratio Σ ET EM/ Σ ET calib vs Σ ET EM

Better linearity when the JES(NI) is applied to jets

Eflow calib of CellOut:

- has small effect on linearity
- improves diagnostic plot in Z->11 events

ATLAS Italia - Pisa, 29 Ottobre 2010

- Better resolution using calibrated jets+JES(NI) respect to EM jets+EMJES - Local Hadron Calibration (LCW) better respect to Global Calibration (GCW) -CellOut Eflow calibrated improves resolution

Best resolution with: Local Calib (LCW) + JES(NI) + Eflow

Linearity=(MET Truth – MET RefFinal)/MET Truth

A. Andreazza – MET and W/Z $\rightarrow \tau$

Osservazione di $W \rightarrow \tau v$

A. Andreazza – MET and W/Z $\rightarrow \tau$ 21

I N F N

lstituto Nazionale di Fisica Nucleare

What's different with other W analyses?

2) smaller E_T^{miss}

(more sensitive to cut variation)

A. Andreazza – MET and W/Z→τ²³

ATLAS Italia - Pisa, 29 Ottobre 2010

Pile up correction

 \Box Pile up strongly affects E_T^{miss} and its significance.

QCD is more strongly suppressed than signal events.

□ Monte Carlo with pile up are rescaled to have the same vertex multiplicity in data.

Cut Flow Table

	2	2			S		x	/ Istituto Nazionale
	Data	$W ightarrow au_{ m h} u_{ au}$	$W ightarrow e u_e$	$W ightarrow \mu u_{\mu}$	$W \to \tau_\ell \nu_\tau$	$Z \rightarrow ee$	$Z \rightarrow \mu \mu$	$Z \rightarrow \tau \tau$
Trigger	986439	954.5±5.2	3560.7±3.4	521.4±1.6	296.5±2.8	75.3±0.2	59.7±0.2	115.1 ± 0.7
QCD jets rejection	415951	728.3±4.7	2735.3±3.5	400.7±1.5	229.4±2.6	24.5 ± 0.1	45.1±0.1	71.4±0.6
$E_{\rm T}^{\rm miss} > 30 { m GeV}$	29686	411.5±3.8	1828.3 ± 3.3	317.1±1.3	121.9±1.9	1.13 ± 0.03	34.4±0.1	35.4±0.4
τ selection	2408	118.0 ± 2.1	1482.0 ± 3.1	26.6±0.4	34.4±1.0	0.59 ± 0.02	3.24 ± 0.04	11.9 ± 0.3
Lepton rejection	685	94.8±1.9	6.7 ± 0.2	4.9 ± 0.2	2.3 ± 0.3	< 0.005	0.11 ± 0.01	4.2 ± 0.2
$S_{E_{\mathrm{T}}^{\mathrm{miss}}} > 6$	78	55.3±1.4	4.2 ± 0.2	3.7±0.1	1.8 ± 0.2		0.08 ± 0.01	2.0 ± 0.1

✓ 78 events selected in data

✓ from Monte Carlo:

- ✓ 55.3±1.4 signal events expected
- ✓ 11.8±0.4 EW background events expected
- ✓ ttbar background negligible, not included

✓ for QCD:

- ✓ simulated statistics is too low to give a good estimate
- ✓ cross section is affected by huge uncertainties

→ have to determine it from data

Statistical uncertainty only

	JO	J1	J2	J3	J4	J5	J6
Events	1399184	1395383	1397078	1397430	1397401	1391612	1347654
Skimming	1053	9412	77978	316343	676161	980236	1139266
GRL	1053	9412	77978	316343	676161	980236	1139266
Trigger	16	1418	41340	273176	627235	917572	1082208
CollCand	16	1418	41340	273176	627233	917568	1082206
JetClean	15	1383	40624	268933	615844	898534	1061743
JetVeto	12	1156	29716	179205	382279	547382	731452
DeltaPhi jet	12	937	13112	50031	96314	116397	117289
METcut	0	18	364	1353	3859	9246	17461
$\tau_{\rm h}$ -ID	0	0	39	209	962	2603	4332
$ au_{ m h}$ -ID Et	0	0	22	58	91	184	309
$\tau_{\rm h}$ -ID eta	0	0	22	57	91	184	306
$\tau_{\rm h}$ -ID lep	0	0	20	49	74	163	266
LeptVeto	0	0	13	37	57	117	167
METSign	0	0	1	2	1	4	3

A. Andreazza – MET and W/Z→τ

ATLAS Italia - Pisa, 29 Ottobre 2010

