ATLAS Italia

Pisa, 29/10/2010

QCD and jets in ATLAS

V.Giangiobbe, INFN & Università di Pisa On behalf of the Pisa Group

Activity of Pisa group

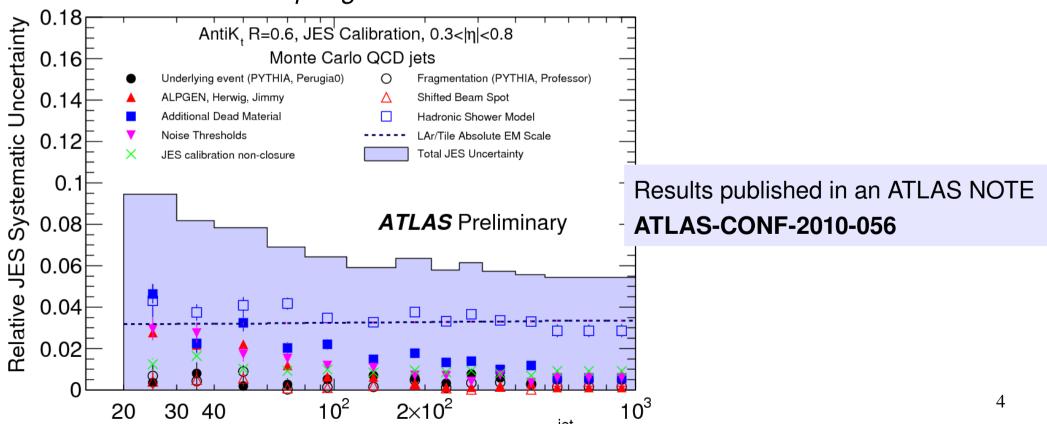
Implication in QCD physics & Jet Energy Scale studies

JES uncertainty is a large source of systematics for many measurements and discoveries involving jets in final state

Validation of the JES

- JES uncertainty from simulation
- JES uncertainty from data
 - Using E/p with single particles
 - Using photon + jet events

Cross-section measurements

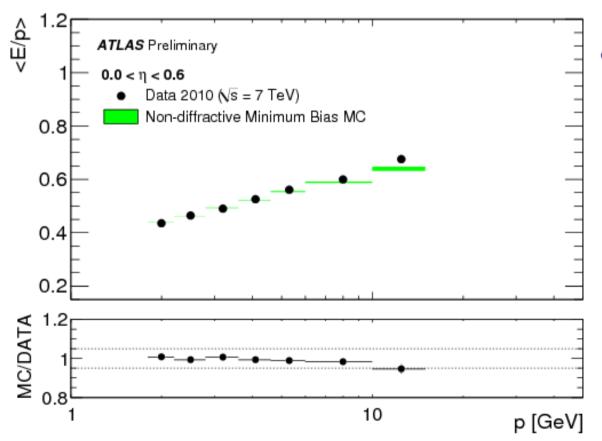

- Inclusive jet & di-jet cross section
- Multi-jet cross section
- Photon + jet cross section

JES uncertainty from MC

- Many sources of systematics on JES
 - Uncertainty on detector description, experimental conditions and calibration methods
 - Dead material in low p_{τ} region : ~4%
 - Energy scale of the calorimeters (from test-beams): ~3%
 - Uncertainty on simulation of the hadron showers in calorimeters: ~4%
 - Uncertainty due to MC events generator
 - Fragmentation, underlying events
- JES estimated varying the parameters of the simulation, and of the jets reconstruction/calibration
 - Generators: Alpgen + Herwig+Jimmy, Pythia with different tunes
 - Hadronic shower model: various physics lists
 - Dead material quantity...

JES uncertainty from MC: results

- Overall JES uncertainty :
 - 10% (low p_T) to 6.5% (p_T >100 GeV) in central region
 - 10% to 7% in end-cap region
 - Using di-jet balance to propagate JES uncertainty from central region to end-cap region

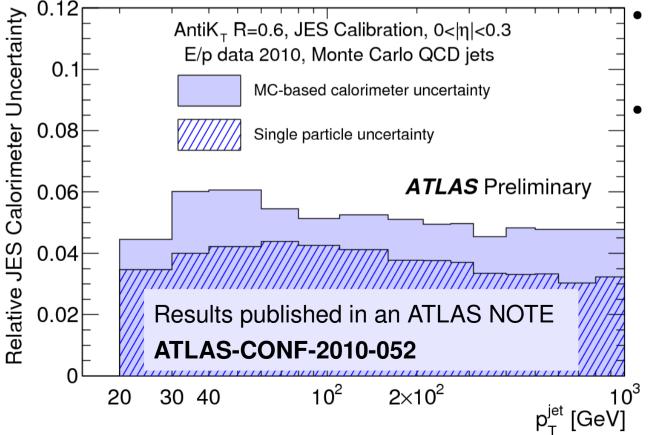


Next steps to reduce JES uncertainty

- Use $Z \rightarrow e^+e^-$ in em calorimeter (-2% on calo scale uncertainty)
- Improve the MC-based jet calibration
 - Better treatment in the gap region η=3.2
- Apply pile-up corrections (so far included in uncertainties)
- Use in-situ methods to determine the JES uncertainty (MCbased JES uncertainty is over-estimated)
 - Get uncertainty on dead material and shower model from E/p study
 - Results are ready, but not yet used. See next slides
 - Better understanding of the fragmentation/UE uncertainty using photon+jet events. Ongoing: See next slides
 - Di-jet η-intercalibration, multi-jet balancing to check JES up to 1TeV
- Goal is to achieve 3-4% JES uncertainty

JES uncertainty from single particles

- Calorimeters response to single isolated hadrons
 - E : energy deposit of an isolated charged particle
 - p : associated track momentum
 - E/p gives an experimental hint on the calo response

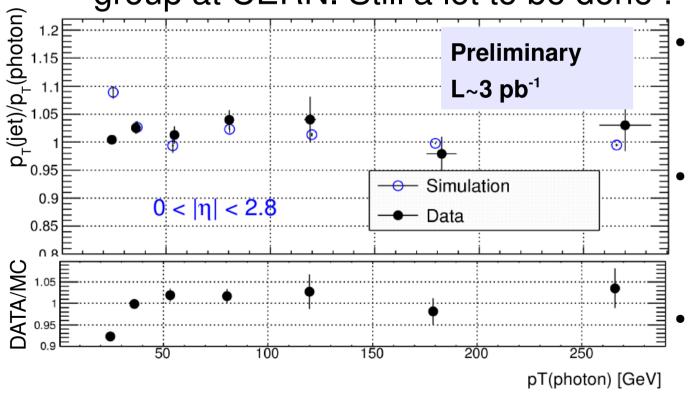


MC/DATA comparison

- Agreement with 5%
- Sources of systematics
 - Shower description
 - Calo energy scale
 - Dead material description

JES uncertainty from single particles

- Uncertainty on single hadron energy can be propagated to the Jet Energy Scale
 - Convolution between particles/Clusters p_T-spectrum of a Jet and the uncertainty on single particle calo reconstruction


- JES uncertainty: 1% bias ± 3-4%
- Can be compared to the MC-based approach (only for instrumental effects)
 - MC-based JES
 uncertainty higher: as
 mentioned slide 5 it is
 probably overestimated

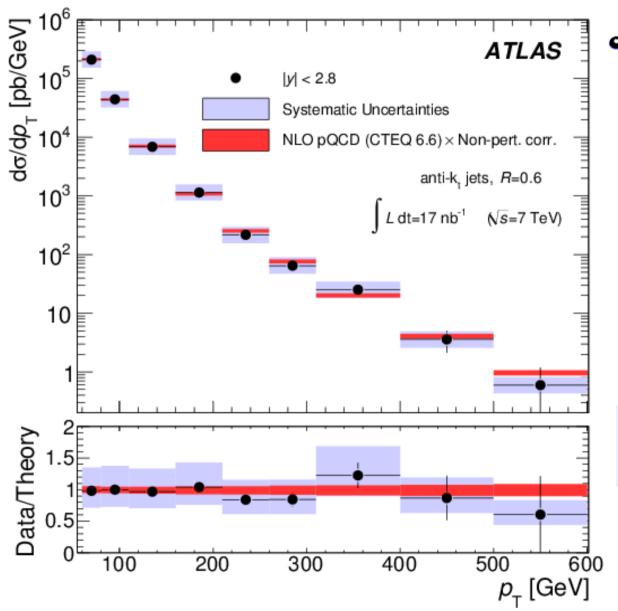
JES from photon+jet events

- Very important to give a data-based estimate of the JES uncertainty
 - $\sigma(p_{\tau}^{\gamma} > 17 \text{ GeV}) \sim 220 \text{ nb}$
 - JES can be checked for p_¬~ 20 to 200 GeV
- Photon used as a reference for the jet energy scale
 - $p_T^{\gamma} \sim p_T^{jet}$
 - p_T^{γ} (or $E'=p_T^{\gamma}\times\cosh(\eta^{jet})$) used as reference p_T^{γ} (or E) for the jet
- MC/Data comparison at various steps of the jet calibration
 - Uncalibrated jet, Calibrated jet (3 different strategies to be validated)

JES from photon+jet events

- First results shown during the last ATLAS Calibration Workshop (Pisa, Sept. 2010)
 - Preliminary results: fair MC/data agreement (difference <10%)
- Work in progress, in collaboration with a small working group at CERN. Still a lot to be done:

- Study of the systematics (bias of the method, generators...)
- Study of the effect of QCD background (\sim 30% at low p_{τ}?)
- A CONF Note is under preparation

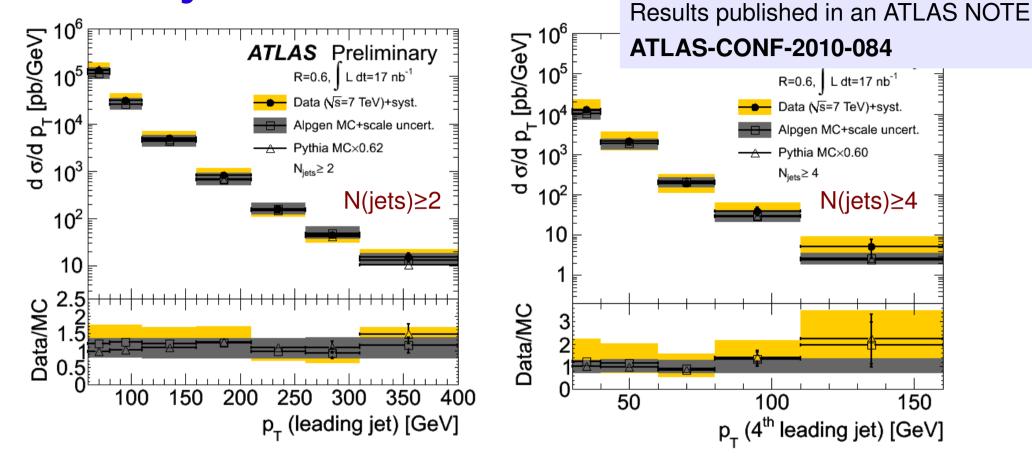

Cross section measurements

- QCD jets inclusive cross section
- Multi-jet cross section
- Photon-jet inclusive cross section

Inclusive jet/di-jet cross-section

- First measurement in a previously unmeasured kinematic regime (up to 600 GeV)
- Unfolding of the detector effect done on MC-basis
- Dominant uncertainty: 10% on JES = 40% on cross section
- DATA/MC comparison have been made for several generators and tunes
 - Alpgen+Herwig+Jimmy, pythia

Inclusive jet/di-jet cross-section

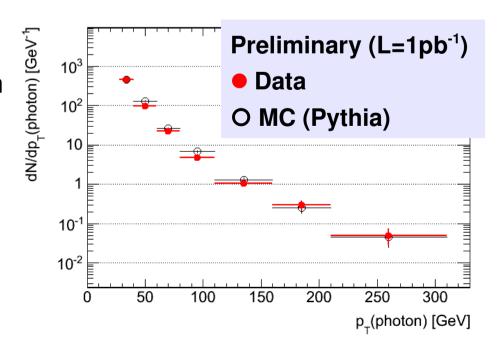

 Good agreement between theory and data, validating the perturbative QCD approach in a new kinematic range.

Results published in an ATLAS NOTE CERN-PH-EP-2010-034

Multi-jet cross-section

- Multi-jets: events with more than 2 jets in final state
- Rich testing for perturbative QCD at high energy
 - Multi-jets from QCD constitute an important background for many channels of interest: good understanding required
- Multi-jet cross section and ratios $\sigma(n-1 \text{ jets})/\sigma(n \text{ jets})$ measured on data (p₊>30 GeV, |y|<2.8)
 - Unfolding of the detector effects done on MC-basis
 - Systematics sources have been studied
- DATA/MC comparison have been made for several generators and tunes
 - Alpgen+Herwig+Jimmy, pythia

Multi-jet cross-section



- Measurements well described within uncertainties
- Cross-section ratios for many jets (up to 4) are better described by leading order matrix element calculation (Alpgen) than by leading log approximation (pythia)

150

Photon+jet cross-section

- Differential cross section measurement $d^3\sigma/dp_T^{\gamma}dy^{\gamma}dy^{jet}$ in different regions of $y^{\gamma}.y^{jet}$ can constrain the gluon pdf in low p_T range
- To make this measurement
 - Unfolding of the detector/selection/acceptance effects
 - Estimate and subtraction of the QCD back-ground
- Some preliminary results
 - MC/Data comparison after selection
 - The agreement is encouraging
 - Still a lot to do: this activity started only recently, with very few persons contributing

Conclusions and perspectives

- Activity on QCD and jets with the early data taking has been concluded by publications
 - E/p studies : July 2010, 300 μb⁻¹
 - JES uncertainty: July 2010, 7 nb⁻¹
 - JES uncertainty with photon + jet : in preparation...
 - Multi-jet cross section : Aug. 2010, 17 nb⁻¹
 - Inclusive jet/dijet cross section : October 2010, 17 nb⁻¹
- Work is still going-on
 - Improve estimate of the JES uncertainty (use in-situ methods)
 - Reduce it down to 3-4 %
 - Improve the Jet calibration
 - pile-up corrections and resolution optimisation
 - Redo all cross section measurements with larger luminosity (L=25 pb⁻¹) 16