TRIGGER EFFICIENCIES - TAG AND PROBE WITH $J/\Psi \rightarrow \mu\mu$

1

M. Biglietti (Univ. La Sapienza Roma1 & INFN)

F. Conventi, E. Rossi (Univ. Napoli & INFN)

&& Jpsilt group (Bologna, Genova, Napoli, Roma1)

Introduction/1

2

- □ In J/psi→µµ events is possible to identify a self-triggering reconstructed muon (the tag) and search for a second reconstructed muon without using trigger system (the probe)
- □ The efficiency is defined as
 - # probes that match the trigger
 - # total number of selected probes
- □ Work mainly driven by "J/Psi cross section and Ratio" paper
 - Data sample
 - Trigger selection
 - Selection cuts

Data Samples & Analysis

3

- Data Samples:
 - due to different configuration (complicated by the trigger commissioning) not all the data available have been used
 - period B+C+D1
 - tested trigger L1_MU0
 - L= ~50nb⁻¹
 - period E6 E7
 - tested trigger EF_mu4
 - L= ~350nb⁻¹
 - Period F
 - tested trigger EF_mu6
 - L= ~2pb⁻¹
- Analysis developed in the Jpsilt package
 - information of L1 ROI (on/off time), HLT trigger objects
 - extrapolation of reconstructed track to the pivot plane
 - trigger matching between offline reconstructed objects and HLT reconstructed objects (from B physics analysis tools)

Selection

4

□ Selection of dimuon candidates from the J/psi mass (selection baseline as the one for reconstruction efficiencied → Stefania'talk)

- 2 opposite sign muons
 - at least 1 combined muon
 - the other one can be a combined or segment-tagged (low pt)
 - p>3GeV
 - nPixels>0, nSCT>5, nTRT>10
 - 0.3<DeltaR<2.5</p>
- "Tag" muon matched with the trigger object that gives the event trigger
 - period B+C+D1: L1_MU0
 - period E : EF_mu4
 - period F: EF_mu6
- "Probe" muon used to test

different trigger selection (both L1 and HLT)

- □ trigger match:
 - DR(L1)<0.4, accepted Rols in -2, -1, 0 BCs
 - □ DR(EF)<0.05

LVL1 TurnOn curves

L1 turnon curves for the MU0 threshold for different data periods

period B+C+D1 period E period F

Eta/Phi Efficiencies

6

L1MU0 period B+C+D1 period E period F

L1 efficiencies for p_T >6GeV wrt eta/phi for the MU0 threshold for different data periods

L1 Low p_T thresholds

Period F

•L1 turnon curves for the low-pt thresholds for data period F •Lower plateau for MU6/MU10 in barrel can be due to bkg – under study L1MU0 L1MU6 L1MU10

EF_mu4 – period E

•L1MU0 and EF_mu4 efficiency in period E •eta/phi region in which HLT efficiency is low

period E6+E7

9

tag and probe method used to monitor the trigger timing :

-tag muon "in time"

-probes test the arrival of the RPC trigger (wrt the L1A) instead of the efficiency

EF_mu6 – period F

MC Comparison: L1_MU0/ L1_MU6

MC Comparison L1_MU0/ L1_MU6

Period F L1MU0 L1MU6

L1 efficiencies for p_T >6GeV wrt eta/phi for the MU0 and MU6 thresholds for data period F

MC Comparison EF_mu4/ EF_mu6

Period E+F

13

turnon curves for mu4 and mu6 threshold for data (periodF) and MC

MC Comparison EF_mu4/ EF_mu6

14

Period E+F

EF efficiencies for p_T >6GeV wrt eta/phi for the mu4 and mu6 thresholds for data period F

Comb+Comb vs **Comb+any** Selection

all tagged muons tagged matched with trigger

Conclusions

16

Trigger efficiency from Jpsi-> $\mu\mu$ using Tag&Probe method:

- -Both L1 and EF studies are already in place
- -work ongoing to include also L2
- Efficiency wrt to pT, eta and phi
- Comparison between periods or/and thresholds
- -MC comparison

-On going:

- Study of Systematics
 - Look at the bkg level impact on trigger efficiencies
 - Trigger matching
 - Selection cuts