Measurement of the muon inclusive cross section up to $p_{\tau} = 100 \text{ GeV}$

B. Di Micco (CERN/Università degli Studi di Roma Tre)

B. Di Micco

ATLAS Italia meeting PISA

29/10/2010

Roma Tre

T. Baroncelli, F. Ceradini, B. Di Micco, A. Farilla, M. Iodice, F. Petrucci

data driven track efficiency, trigger efficiency, background determination, cross section evaluation, data/MC comparison

Pavia

S. Franchino (acceptance and MC track efficiency studies, contamination evaluation)

Frascati

M. Antonelli, A. Sibidanov - data driven track efficiency

Analysis reviewers

R. Ferrara (Pavia), C. Amelung, K. Tokushuku

Analysis based on the EWPA-00-04-14 analysis framework and MCP ntuples. Ntuples produced on Italian tier-2 and locally analysed at Roma-3 Tier-3 (20 TB).

The measurement

$$\frac{d\sigma_{\mu}}{dP_{T}} = \frac{1}{L} \frac{dN_{\mu}}{dp_{T}} \qquad \frac{dN_{\mu}}{dp_{T}} = \frac{f_{prompt}(p_{T})}{\epsilon_{trig}(p_{T})\epsilon_{track}(p_{T})} \frac{dN_{\mu reconstructed}}{dP_{T}}$$

 $f_{prompt}(p_T)$ Fraction of muons not coming from π and K decays evaluated on data using Monte Carlo shapes

$\epsilon_{trig}(p_T)$ Trigger efficiency evaluated on DATA;

 $\boldsymbol{\epsilon}_{track}(\boldsymbol{p}_{T})$

Track efficiency evaluated on Monte Carlo and corrected for DATA/MC discrepancies.

L Integrated luminosity of the data sample

ATLAS Italia meeting PISA

Muons from π and K are produced almost everywhere in the I.D. and calorimeter, Their rate is material and geometry dependent. No muons from π/K at the I.P.

Remaining muons come from particles with short decay length, almost detector independent, production yield in pp collision is a physics measurable quantity.

B. Di Micco

ATLAS Italia meeting PISA

Physics of the prompt muon cross section.

At low p_{τ} the prompt muon spectrum measures the heavy quark production cross section.

At high p_{τ} (> 25 GeV) W/Z contribution becomes important.

1) Identification of collision events using MBTS pads times;

 2) Staco combined muons
 (Inner Detector track + Muon Spectrometer Track matched each in angle and momentum, the best matched combination is taken)

3) $|\eta| < 2.5$ (inside inner detector acceptance), the cross section will be evaluated in this η range (no acceptance correction)

Data sample	Trigger	Luminosity nb ⁻¹	P_{T} range
Run Range: 152777 – 158392			
152777 switch of Muon Trigger to 3 BC 158393 HLT rejection applied at L1_MU0	L1_MU0	46.3	4-16 GeV
Run Range: 158443 – 159224 ICHEP STATISTIC	L1_MU10	282	16-100 GeV
Run Range: 160387 – 161948 period E > 161948 HLT rejection applied to all chains	L1_MU10	1002.2	16-100 GeV

B. Di Micco

Trigger efficiency - L1_MU0/L1_MBTS_1

1) L1_MBTS_1 trigger efficiency has been evaluated on data on the Random stream respect to collision event selection (ϵ >0.99999) 819/819 triggered events;

2) measure the spectrum on L1_MBTS_1 triggered events;

3) measure the spectrum on L1_MU0 and L1_MBTS_1 triggered events;

4) The ratio of the two is the L1_MU0 trigger efficiency on our sample;

Minimum Bias stream run range 152777-155697

Fermi-Dirac fitting function

$$\frac{p_{0}}{1+e^{\frac{-(P_{T}-p_{1})}{p_{2}}}}$$

B. Di Micco

ATLAS Italia meeting PISA

Trigger efficiency – L1_MU10/L1_MU0

Efficiency evaluated in the Run Range: 152777 – 158392

 $\epsilon(MU10)/\epsilon(MU0)$ $\epsilon(MU10)/\epsilon(MU0)$ χ^2 / ndf 5.123 / 7 Prob 0.645 p0 $\textbf{0.8375} \pm \textbf{0.006581}$ 0.9 0.9 210-10-0.8 0.8 **0.7**E 0.7 Flat behaviour above 16 GeV 0.6 0.6 0.5 ю 0.5 χ^2 / ndf 108.1 / 18 0.4 0.4 Prob 6.976e-15 0.3 pО 0.8488 ± 0.003539 6 0.3 p1 7.183 ± 0.09101 0.2 p2 0.973 ± 0.06657 0.2 ю 0.1 P_{T} [GeV] P_T [GeV] **0.1**∃ 0 0 20 25 30 35 5 10 15 40 20 25 30 35 40

B. Di Micco

Effective cross section comparison ICHEP statistics

B. Di Micco

Effective cross section period E

$$\frac{d \sigma_{eff}}{dp_{T}} = \frac{N_{\mu}}{\epsilon_{MU10/MU0} L_{MU10}} \begin{bmatrix} \text{Run Range:} \\ 158443 - 159224 \\ \text{L}_{\text{int}} = 281700 \ \mu\text{b}^{-1} \end{bmatrix}$$

$$\frac{d \sigma_{eff}}{dp_T} = \frac{N_{\mu}}{\epsilon_{MU10/MU0} L_E} \qquad \begin{array}{l} \text{Run Range:} \\ 160387 - 161948 \\ L_{\text{int}} = 1002200 \ \mu\text{b}^{-1} \end{array}$$

5% reduction in the yield, trigger efficiency under investigation with JetTauEtMiss and L1Calo streams

B. Di Micco

PythiaB bbmu4

Event with a quark b in $|\eta| < 4.5$ and $p_{\tau} > 5$ GeV and a muon (before GEANT simulation) with $|\eta| < 2.5 p_{\tau} > 4$ GeV

PythiaB ccmu4

Event with a quark c in $|\eta| < 4.5$ and $p_T > 4$ GeV and a muon (before GEANT simulation) with $|\eta| < 2.5 p_T > 4$ GeV

Reconstruction efficiency is flavour independent, we can measure directly the sum of the two contributions.

DATA/MC correction for the track efficiency.

The problem is the determination of a pure muon sample without using MS track informations.

Method 1

Look for an ID track that matches an L1_MU0 ROI in ΔR .

Selection

- |η| < 2.5, p_T > 4 GeV
- n_{pixel} > 1; n_{SCT} > 5;
- $\Delta R (ID-ROI) < -0.0087^* p_T + 0.235$ $p_T < 20 \text{ GeV}$ 0.06 $p_T > 20 \text{ GeV}$

DATA/MC correction for the track efficiency - Method 2

We select good ID tracks associated with jet using the following criteria:

- $\sqrt{(\eta_{\rm jet} \eta_{\rm trk})^2 + (\phi_{\rm jet} \phi_{\rm trk})^2} < 0.4$
- |η| < 2.5
- $p_t > 4 ~{
 m GeV}/c$
- $d_{PV}/\sigma_d > 3$
- $\chi^2/\mathrm{ndf} < 1.25$
- + sliding quality cuts
- $E_{\mu} > 1.4$ GeV in B in jet+ μ rest frame
- TopoCluster with energy release in layers closest to MIP close to track extrapolation, with correction of calorimeter granularity in η .

Prob 0.9362 p0 0.9753 ± 0.008353 1.4 Muon Fake Muon 1.2 Energy deposited in the 3000 Last palne of the tile, and 00 2500 (DATA)/ɛ(MC) **HEC**⁰ 2000 00 1500 00 1000 00 500 00 20 10 15 25 30 2.5 ω 0.5 1.5 2 2.5 0.5 1.5 2 η

ATLAS Italia meeting PISA

 χ^2 / ndf

4.894 / 1

Muons from pi/K decay in calorimeter and punch through

The ID track is the pi/K momentum, the MS track is the muon momentum, at high P, Δ P measures the energy taken by the neutrino at low P large kink are possible

 ΔP_{T} most sensitive variable

The relative MS-ID miscalibration is taken into account by scaling and smearing the Monte Carlo MS momentum

 $P_{T}(MS) \rightarrow \alpha P_{T}(MS) + \beta r P_{T}(MS)$ r normally distributed number

The MC is templated event by event and the scale and smearing are applied at each minimization step

B. Di Micco

ATLAS Italia meeting PISA

10²

Scale and smearing η dependence

MS condition strongly η dependent, determination of the smearing and scale as a function of η using non-diffractive Minimum Bias for 4 < p_{τ} < 16 GeV

1.05 Scale Fit performed with MC JF17 1.04 Templates from non-diffractive 1.03 1.02 minimum bias 1.01 0.99 0.98 0.97 0.8 0.96 0.95 -2 -1.5 -0.5 0 0.5 1.5 2 2.5-2.5 -1 1 0.6 η % 0.4 10 smearing 9 Minimum bias MC sample 8 0.2 P_{τ} [GeV] 7 6 5 0 4 5 15 25 30 35 10 20 45 50 40 3 2 Fit interval $\leq D_1$ 0 -2 -0.5 0.5 1.5 2.5-2.5-1.5 -1 0 2 η

B. Di Micco

ATLAS Italia meeting PISA

 η independent scale correction factor

as a function of p_{τ} (super-scale)

Signal fraction determination.

Irregular behaviour up to 8 GeV Pol2 fit for $p_{\tau} > 8$ GeV.

Study performed in p_{T} (ID), p_{T} combined results in an unphysical value on fakes (the average between the π/K and the muon momenta)

Need weighting matrix to have contribution in P_{τ} (CB).

Cross section evaluation

B. Di Micco

The muon inclusive cross section

4 <
$$p_T$$
 < 20 GeV
 $σ^{\mu}_{DATA}$ = 5.5 μb
 $σ^{\mu}_{bb}$ + $σ^{\mu}_{cc}$ = 13 μb

B. Di Micco

MC predictions for μ in bb events

B. Di Micco

Conclusions

- Trigger efficiency have to be recomputed period by period using calo streams;
- Inner Detector DATA/MC correction have to be computed;
- Determination of the CB muon resolution need to be performed and the

spectrum need to be unfolded (Gatti,Dreucci method?)

- Systematics under evaluation
- We point to have a preliminary result with 1.4 pb⁻¹
- Extract the heavy quark production cross section, W,Z and W/Z production cross section from the fit to the spectrum;
- Constraint the PDF set in the given experimental uncertainties and

fragmentation model uncertainities.

Generation and filtering...

B. Di Micco

Trigger efficiency – L1_MU0/L1_MBTS_1 (DATA/MC comparison)

Data MC comparison without L1_MU0 trigger efficiency correction

Data are corrected for trigger efficiency. In MC trigger is not required.

B. Di Micco

B. Di Micco