

NOvA Results on Long-Baseline Oscillations

Adam Aurisano University of Cincinnati on behalf of the NOvA Collaboration

> NOW 2022 5 September 2022

Outline

- NOvA Overview
- New search for sterile neutrinos
 - ν_{μ} -CC and NC disappearance
 - Two-detector joint fit
- New search for non-standard interactions
 - $\nu_{\mu}\text{-}CC$ disappearance and $\nu_{\mathrm{e}}\text{-}CC$ appearance
- Three-flavor oscillation results
 - $\nu_{\mu}\text{-}CC$ disappearance and $\nu_{\mathrm{e}}\text{-}CC$ appearance
 - Bayesian re-analysis
- Conclusions

NuMI Off-Axis v_{a} Appearance Experiment

NOvA is a long-baseline neutrino oscillation experiment located 14 mrad offaxis from the NuMI beam designed to measure:

$\nu_{\rm p}$ appearance

- Mass ordering θ_{23} octant
- CP violation
- v_{μ} disappearance
 - Improved precision on $|\Delta m^2_{32}|$ and θ_{23}

NC disappearance

- Search for sterile neutrinos
- Constrain θ_{34} and θ_{24}

Others

- Short-baseline
 NSI
 - oscillations Supernovae
- Cross sections
 Exotics

NuMI Neutrino Beam

Recorded 13.6 x 10²⁰ POT equivalent in neutrino mode at the FD
Used in sterile, NSI, and three-flavor analyses

NuMI Antineutrino Beam

Recorded 12.5 x 10²⁰ POT-equivalent in antineutrino mode at the FD
Used in NSI and three-flavor analyses

Off-axis Flux

- Flux narrowly peaked at ~2 GeV
- High $\nu_{\mu} \left(\overline{\nu}_{\mu} \right)$ purity
- New beamline components installed
 - New power record: 893 kW

MW-capable target (installed 2019)

MW-capable horn (installed 2020)

NOvA Detector Design

Far detector (FD)

- 14 kton
- 15m x 15m x 60m
- 65% active mass
- ~344,000 channels

Near detector (ND)

- 0.3 kton
- 3.8m x 3.8m x 12.8m (main detector)
- Functionally equivalent to FD for systematic uncertainty reduction
- ~20,000 channels

Low Z tracking calorimeter composed of alternating horizontal and vertical planes of liquid scintillator filled cells.

Wavelength shifting fibers carry light out of the cells to APDs.

3.9 cm

6.0 cm

Event Topologies

Neutrino Interaction Classifier

70

60 50

a 40

30

20

40

- Convolutional Visual Network (CVN) is a selection algorithm based on Deep-Learning techniques
- Uses all information in minimally reconstructed events
- Is a multi-purpose classifier
 - Capable of selecting v_e, v_μ, v_τ , NC, and cosmics

Convolutional layers learn filters to optimally extract features from the data

Use reconstructed

energy in each

cell as input

Individual learned filters are sensitive to physics: e.g. hadronic activity or muon tracks

JINST 11 (2016) P09001

100

80

Sterile Neutrinos

Sterile Neutrinos

- Short-baseline experiments (LSND, MiniBooNE) observed anomalous excesses of $v_e(\overline{v}_e)$ in $v_\mu(\overline{v}_\mu)$ beams
- BEST observed anomalous deficit in $\nu_{\rm e}$ from a ^{51}Cr neutrino source over short baselines
- Anomalies could all be explained by oscillations driven by a mass splitting $\Delta m^2 \sim 1 \text{ eV}^2$
 - Not consistent with three known active flavors
- Simplest model adds one new mass state and one new, sterile flavor state
 - 3+1 model contains 6 new parameters

3+1 NC Disappearance

- Due to lepton universality, NC interaction rate is invariant under three flavor oscillations
 - NC disappearance is clear signal of active \rightarrow sterile disappearance
- Δm_{41}^2 independent terms lead to oscillations at beam peak in FD
- For large Δm_{41}^2 , NC disappearance can occur in ND

$3+1 v_{\mu} CC$ Disappearance

- Sterile neutrinos manifest as additional v_{μ} disappearance above that expected from three flavor oscillations
- Interplay between θ_{23} and θ_{24} affect depth of atmospheric maximum
- Modulations are possible at high energy in FD
- For large Δm_{41}^2 , ν_{μ} disappearance can occur in ND

Neutrino Energy (GeV)

Neutrino Energy (GeV)

3+1 Oscillation Analysis

- New 3+1 sterile neutrino search uses a two-detector fit approach with NC and ν_{μ} CC samples
 - Ability to fit oscillation signals in ND significantly expands reach in Δm_{41}^2
 - Analysis performed with two independent approaches, PISCES and CMF
 - Both methods use different novel Gaussian multivariate test statistics and find consistent results, acting as a crosscheck on each other
 - Covariance matrix approaches capture ND-FD correlations in systematic uncertainties
- Analysis uses new normalization and model spread uncertainties for 2p2h events
 - NOvA's standard data-driven cross-section tune uses ND data, so cannot be used
- New 5% normalization uncertainty on neutrinos with kaon ancestors, based on horn-off neutrino data

Sterile Neutrino Search Results

Neutrino Beam

Sterile Neutrino Search Results

Neutrino Beam

NOvA Preliminary

Pink line includes both 3-flavor oscillations and effect of correlated systematics

NOW 2022 - Adam Aurisano

Sterile Neutrino Search Results

Neutrino Beam

NOvA Preliminary

3 and 3+1 flavor best fits ~ identical Goodness of fit: $\chi^2/DOF = 56.4/66$

Δm_{41}^{2} vs. sin² θ_{24} Limits

- Competitive limits on θ_{24} in high Δm_{41}^2 regime
- Profile θ_{23} , Δm_{32}^2 , θ_{34} , and δ_{24}
 - Other three flavor parameters held fixed at recent NuFit values
 - θ_{14} fixed at zero due to constraints from reactor data
 - Loose Gaussian constraint applied to Δm_{32}^2

Neutrino Beam 10² JOvA Preliminar 90% CL allowed IceCube 10 Δm^2_{41} (eV²) 90% CL excluded - NOvA MINOS+ CDHS CCFR 10^{-2} T2K (NH) T2K (IH) SciBooNE & MiniBooNE Super-Kamiokande 10^{-3} 10^{-3} 10^{-2} 10^{-4} 10^{-1} 1 $\sin^2 \theta_{24}$

Δm_{41}^{2} vs. $sin^{2}\theta_{34}$ Limits

- World-leading limits on $\theta_{_{34}}$ for small $\Delta m_{_{41}}{}^2$
- Profile θ_{23} , Δm_{32}^2 , θ_{24} , and δ_{24}
 - Other three flavor parameters held fixed at recent NuFit values
 - θ_{14} fixed at zero due to constraints from reactor data
 - Loose Gaussian constraint applied to Δm_{32}^2

Sterile Neutrino Takeaways

- No evidence for sterile neutrinos in NOvA data
- New constraints on 3+1 model
 - Competitive θ_{24} limits at high Δm_{41}^2
 - World leading θ_{34} limits at low Δm_{41}^2

Non-Standard Interactions

NOvA and T2K

- NOvA and T2K data preferences broadly compatible
 - Most probable regions (in NO) distinct, but significant 1σ contour overlap
 - IO surfaces very similar
- Official NOvA + T2K joint analysis is expected later in 2022
 - Will help quantify level tension (or not)
- If tension were to increase in future, what could it mean?

Non-Standard Interactions

Non-standard interactions (NSI) modify standard three flavor neutrino oscillations by introducing anomalous interactions between neutrinos and matter, in addition to the standard MSW effect

$$\mathcal{H} = \frac{1}{2E} \left[U_{\text{PMNS}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta_{21}^2 & 0 \\ 0 & 0 & \Delta_{31}^2 \end{pmatrix} U_{\text{PMNS}}^{\dagger} + a \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^* & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^* & \epsilon_{\mu\tau}^* & \epsilon_{\tau\tau} \end{pmatrix} \right]$$

 $a = 2\sqrt{2}G_F N_e E$

 $\epsilon_{\alpha\beta} = |\epsilon_{\alpha\beta}| e^{i\delta_{\alpha\beta}}$

Wolfenstein matter potential

Introduces 9 new parameters: On-diagonal: NSI-induced mass squared splittings (real valued) neglected in this analysis Off-diagonal: NSI-induced mixing angles (complex) fit these individually

Search for NSI

- NOvA's 810 km baseline is associated with strong matter effects
- Off-diagonal anomalous matter effects can produce substantial changes in NOvA predictions
- Use v_{μ} , \overline{v}_{μ} disappearance and v_{e} , \overline{v}_{e} appearance spectra

Search for NSI

- NOvA's 810 km baseline is associated with strong matter effects
- Off-diagonal anomalous matter effects can produce substantial changes in NOvA predictions
- Use v_{μ} , \overline{v}_{μ} disappearance and v_{e} , \overline{v}_{e} appearance spectra

NSI $\varepsilon_{e\tau}$ Analysis Spectra

- Fit to CC v_e and v_{μ} selections in both neutrino and antineutrino beam modes
- Allow three-flavor parameters and one offdiagonal parameter (and phase) to vary
- ε_{eτ} case yields a best fits very similar to a three-flavor only fit

 $-\Delta\chi^2 \sim 0.65$

- Consistent with standard oscillations
 - $\epsilon_{_{e\mu}}$ and $\epsilon_{_{\mu\tau}}$ yield similar results

NSI $\varepsilon_{e\tau}$ 90% CL Limits

- Perform oscillation fits in terms of $|\epsilon_{_{e\tau}}|$ against phases $\delta_{_{CP}}$ and $\delta_{_{e\tau}}$
- Upper band in both fits is a result of degeneracy between the two phases, which becomes dominant at large $|\varepsilon_{e\tau}|$

NSI $\varepsilon_{e\tau}$ 90% CL Limits

- Introducing NSI via $\varepsilon_{e\tau}$ into three flavor oscillations has minimal effect on constraint on Δm_{32}^2 and $\sin^2(\theta_{23})$
- Allowing $\epsilon_{\mu\tau}$ to be free induces larger effects in this space

NSI $\varepsilon_{e\tau}$ 90% CL Limits

- Introducing NSI via $\mathcal{E}_{e\tau}$ into three flavor oscillations profoundly affects sensitivity to CP violation
- Much sensitivity to δ_{CP} in the three flavor interpretation is lost when introducing NSI, due to degeneracy with δ_{et} phase

NSI Takeaways

- Addition of NSI does not improve description of NOvA data
- Large NSI parameter values excluded at 90% CL
 - $|\mathbf{E}_{e\mu}| > 0.6$
 - $1.0 < |\varepsilon_{e\tau}| < 1.2$ and $|\varepsilon_{e\tau}| > 2.0$
 - All values of phases compatible with current data
- Allowing the possibility of NSI affects standard oscillation parameter inferences
 - Minor weakening of atmospheric parameter measurements
 - Mass ordering and $\delta_{\rm CP}$ sensitivity effectively wiped out

Three-Flavor Oscillations

Three-Flavor Oscillations

- New Bayesian analysis has similar top-line conclusions as previous
 - Phys. Rev. D 106 (2022) 032004
- Weak preferences for normal ordering and upper θ_{23} octant
- Rule out (>3 σ) combination (IO, $\delta_{\text{CP}} = \pi/2$)
- Allows us to drill deeper

θ_{13} Constraints

LBL experiments can't measure
$$\theta_{23}$$
 octant alone:
 $P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin \theta_{23} \sin 2\theta_{13} \sin \Delta_{31}$

- Bayesian analysis enables first NOvA-only measurement of θ_{13} :
 - Strong correlations with θ_{23} (as expected)
 - Very good agreement with reactor values
 - Weak θ_{23} octant preference driven by reactor constraint

 $\sin^2 2\theta_{13} = 0.085^{+0.020}_{-0.016}$

Three Flavor Takeaways

- Weak indications for upper $\theta_{\scriptscriptstyle 23}$ octant and normal ordering
- PMNS model holding up well to deeper scrutiny
 - First NOvA only θ_{13} result is consistent with reactors
 - NOvA and T2K have broadly compatible three flavor results
 - Bayesian result enables other new inferences too, like Jarlskog invariant
- More details from Juan Miguel Carceller on Wednesday

Summary

- NOvA embarking on a program of more deeply probing the consistency of the PMNS model
 - Holding up well under increased scrutiny
 - No sign of sterile neutrinos
 - NSI do not improve description of data
 - Good agreement with other three flavor measurements (reactors, T2K)
- Official NOvA-T2K combination expected later in 2022
- About 50% of expected data collection is still to come
- Stay tuned!

Thank You!

Backup Slides

Sterile Neutrino References

- Citations:
 - SK: K. Abe et al. (Super-Kamiokande), Phys. Rev. D 91, 052019 (2015)
 - CDHS: F. Dydak et al. (CDHSW), Phys. Lett. B 134, 281 (1984)
 - CCFR: I.E. Stockdale et al. (CCFR), Phys. Rev. Lett. 52, 1384 (1984)
 - SciBooNE: K. B. M. Mahn et al. (SciBooNE, MiniBooNE), Phys. Rev. D 85, 032007 (2012)
 - MINOS+: P. Adamson et al. (MINOS+)
 Phys. Rev. Lett. 122, 091803 (2019)
 - T2K: K. Abe et al. (T2K) Phys. Rev. D 99, 071103(R) (2019)
 - IceCube: M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 125, 141801 (2020)

The Upper Band

(and are not reducible to the 3-flavor-only case even at ($\delta_{_{\rm CP}}$ + $\delta_{_{
m et}}$)=n $\pi/2$).

$\epsilon_{e\tau}$ Limit, Combined Phase

Understanding the Degeneracy

Understanding the Degeneracy

