CEvNS with reactor neutrinos and cryogenic detectors

Johannes Rothe, Technical University Munich

Neutrino Oscillation Workshop 2022 September 10, Ostuni

CEvNS at Nuclear Reactors

Taking CEvNS to a nuclear reactor:

- 10 x lower neutrino energies than π -DAR \rightarrow full coherence expected
- Several orders of magnitude higher total neutrino flux
- Potential for low-energy precision studies
- Possibility for detector miniaturization and technological application

Initial goal: first observation of CEvNS from reactor neutrinos

ΠU

Reactor CEvNS: the challenge

→ needs **low background techniques** at a shallow site

Recoil energy [keV]

nu/cleus

 10^{-2}

The NUCLEUS collaboration

~50 members from institutions in four countries

MAX-PLANCK-INSTITUT

nu/cleus

NOW 2022, Johannes Rothe

Active and passive external shields

10.09.2022

NOW 2022, Johannes Rothe

NU/

PIIS

Active and passive external shields

10.09.2022

NOW 2022, Johannes Rothe

6

10.09.2022

nu/cleus

Gram-scale Cryogenic Calorimeters

NOW 2022, Johannes Rothe

NUCLEUS target crystals

- Detectors fabricated as 3x3 arrays (two of each material)
- Transition temperatures characterized: T_c < 21mK, good for high sensitivity
- Dicing and polishing in progress
- Cryogenic testing of target cubes ramping up
- Recent breakthrough: cryostat vibration decoupling

nu/cleus

10.09.2022

NUCLEUS inner detector module

Inner detector module: side view

NOW 2022, Johannes Rothe

Design goal: only **active material** facing the targets \rightarrow no degraded higher-energy events or external backgrounds

- Thermal and electrical lines on **silicon support wafers** •
- Instrumented detector holding structure: "inner veto" ٠
 - Top: Si wafer with flexible contact points to target cubes
 - Bottom: rigid wafer \rightarrow Silicon beaker
- Fast and easy mounting procedure •
 - \rightarrow Design verified by cycling to < 0.01 K
 - \rightarrow ready for test with active target cubes

Flap with pyramid contact

Inner veto flexible wafer

10.09.2022

Support wafer and connections Rigid wafer with contact windows

nu/cleus

Cryogenic Outer Veto

6 high purity Germanium crystals (2.5cm, 4kg total)

Active shielding against external backgrounds

- ionization readout
- fully surrounding inner cryodetector
- fast response for anti-coincidence operation
- few keV threshold
 - \rightarrow >90% rejection of ambient γ events

10.09.2022

4x rectangular detectors in production

2x cyl. crystals during cryogenic performance test

nu/cleus

Cu holding structure: mechanical demonstrator

Plastic Scintillator Muon Veto

nu cleus EXPERIMENT

External muon veto

28 plastic scintillator slabs (5cm) read out with WLS fibers and Silicon PhotoMultipliers (SiPM)

- Geometrical efficiency 99%
- Prototype characterized (JINST 17 T05020 (2022))
- Modules in production

Cryo muon veto

Disk thermalized at 0.7 K Read by a SiPM at 300 K

- Mandatory for solid-angle coverage
- Cryogenic operation demonstrated

(arXiv:2205.01718)

The Low-Energy Excess

A. Fuss, et al. arXiv:2202.05097, scipost.org/SciPostPhysProc.9.001

NU/

EXPERIMENT

https://indico.cern.ch/event/1117540/contributions/

EXCESS workshop: multi-collaboration effort. two editions so far, up next: satellite of TAUP23

With NUCLEUS' veto systems we plan to investigate:

- impact of atmospheric muon secondaries
- impact of detector holder-related events

Many rare-event searches observe a low-energy excess of unknown origin

- Events have particle signature (not necessarily particle origin)
- Excess seems to have multiple components

10.09.2022

NOW 2022, Johannes Rothe

Calibration techniques

NUCLEUS aims to observe a broad nuclear-recoil spectrum < 100 eV

Calibration "state-of-the-art":

- ⁵⁵Fe source (5.9/6.5 keV x-rays)
- heater pulses to map linearity of detector response
- \rightarrow extrapolation over two orders of magnitude
- \rightarrow electron-recoil calibration / nuclear-recoil signal

Improvements planned for NUCLEUS-10g:

- 1) ER calibration at lower energies (XRF)
 - Cryo-compatible source developed @TUM
 - ⁵⁵Fe source + Al/Cu/PTFE targets \rightarrow dense line spectrum down to sub-keV

2) Mapping detector response with artificial particle events (LED calibration)3) Cross-calibration with sub-keV monoenergetic nuclear recoils (CRAB project)

Calibration: photon statistics

Light bursts from room-temperature LED via optic fibers:

- fast (µs) LED flashes \rightarrow detector signals with controllable average photon number
- Poissonian photon statistics reveal true injected energy! (photon energy is known)
- \rightarrow absolute calibration + injection at tunable energies (down to threshold!)
- NUCLEUS-10g will be integrated with optic fibers on each target
- Two-fiber prototype system operational

EXPERIMENT

Optic fibers in NUCLEUS-10g

Calibration: nuclear recoils

Typical nuclear recoil spectra are continuous (free scattering angle)

The **CRAB** idea: mono-energetic recoils following neutron capture L. Thulliez, D. Lhuillier *et al* 2021 *JINST* 16

Calibrated Recoils for Accurate Bolometry

10.09.2022

NOW 2022, Johannes Rothe

Calibration: nuclear recoils

NUCLEUS Status & Schedule

NUCLEUS Status & Schedule

NUCLEUS-10g physics run Phase 1: observe CEvNS

Towards NUCLEUS-1kg Phase 2: CEvNS at few-% level

NOW 2022, Johannes Rothe

On-site installation

Preparations ongoing:

Background measurements (gamma, neutrons)

nu/cleus

EXPERIMENT

- Site characterisations (acoustic, magnetic)
- Installation of infrastructure at VNS

10.09.2022

Thanks for your attention

CEvNS applications

nu cleus

SM / BSM tests of neutrino interactions at low energies

Input to supernova modeling

Irreducible background to WIMP searches (neutrino floor)

Non-invasive nuclear reactor monitoring (with small detectors)

The fiducialized cryogenic detector

Target crystals:

Two 3x3 arrays, 6g (CaWO₄) + 4g (Al₂O₃) simultaneous measurement of CEvNS and a background-only reference

Smm

Inner veto: TES-instrumented holder to reject surface backgrounds and holder-related events

Germanium outer veto: for active γ/n background rejection

nu/cleus

