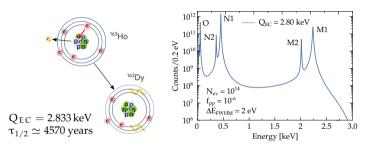
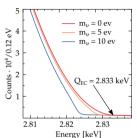
Status of HOLMES, an experiment for measuring the neutrino mass

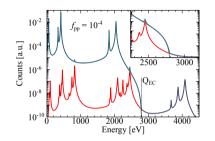
Elena Ferri


INFN of Milano-Bicocca on behalf of HOLMES collaboration



1/22

$$^{163}\text{Ho} + e^- \rightarrow \,^{163}\text{Dy}^* + \nu_e(E_c) \quad \text{electron capture from shell} \geqslant M1$$


- Calorimetric measurement of Dy atomic de-excitations (mostly non-radiative) $\Rightarrow \text{measurement of the entire energy released except the ν energy}$

- proposed for the first time by A. De Rujula e M. Lusignoli in 1982 Phys. Lett. 118B (1982) 429 Nucl. Phys. B219 (1983) 277-301
- rate at the end point depends on ($Q-E_{M1}$): the proximity to M1 resonance peak enhances the statistics at the end point (i.e. sensitivity on m_{ν})
- Searching for a tiny deformation caused by a non-zero neutrino mass to the spectrum near its end point

2/22

$$S(E_c) = \left[N_{ev}(N_{EC}(E_c, m_{\nu}) + f_{pp} \times N_{EC}(E_c, 0) \otimes N_{EC}(E_c, 0)) + B(E_c)\right] \otimes R_{\Delta E}(E_c)$$

 N_{ev} : total number of events

 $N_{EC}(E_c, m_v)$: ¹⁶³Ho spectrum B(E) : background energy spectrum

 $R_{\Delta E}(E_c)$: detector energy response function

fpp : fraction of pile-up events

 $R_{\Delta E}(E_c)$: detector energy response function

 ΔE intervall of energy

more details on Eur. Phys. J. C 74 (2014) 3161

- Pulse pile-up occurs when multiple events arrive within the temporal resolving time of the detector

- Unresolved pile-up events close to the end-point impairing effect on the end-point measurement
- The 163 Ho pile-up events spectrum is quite complex and presents a number of peaks at the end-point
- To resolve pile-up:
 - Detector with fast signal rise-time τ_{rise}
 - Pile-up recognition algorithm (i.e. Wiener filter, Singular Value Decomposition)

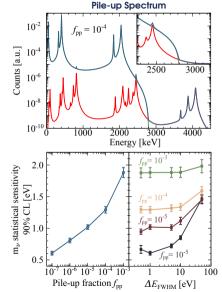
The HOLMES experiment (ERC-2013-AdG no. 340321)

The m_{ν} statistical sensitivity has:

- Strong dependence on statistic: $\Sigma(m_v) \propto N_{events}^{1/4}$
- Strong dependence on pile-up: $f_{pp} \simeq A_{EC} \cdot \tau_{\mbox{\tiny res}}$

(A $_{E\ C}$: pixel activity, $\tau_{\mbox{\tiny res}}$: time resolution)

- Weak dependence on energy resolution ΔE ;


Multiplaxable detectors with fast response are required

HOLMES

Neutrino mass determination with a sensitivity as low as $\approx 1~\text{eV}$

- Microcalorimeters based on Transition Edge Sensors with $^{163}\mathrm{Ho}$ implanted Au absorber
- Pixel activity of $A_{EC} \sim 300\,$ Bq/det
- Energy resolution: O(eV)
- Time resolution: $\tau_{\rm res} \sim 3~\mu s$ ($\tau_{\rm rise} = 10-20~\mu s$);
- 1000 channels for $3 \cdot 10^{13}$ events collected in $T_M = 3$ years

more details on Eur. Phys. J. C (2015) 75: 112

¹⁶³Ho production and chemical purification

Production

 $^{163}\mathrm{Ho}$ production from $^{162}\mathrm{Er}$ neutron activation

$$^{162} \text{Er}(\text{n},\gamma)^{163} \text{Er} \quad \sigma_{\text{therm}} \approx 20 \text{b}$$

$$^{163}\text{Er} + e^- \rightarrow ^{163}\text{Ho} + \nu_e ~~ \tau_{1/2} \approx 75\,\text{m}$$

- 162Er irradiation at ILL nuclear reactor @ Grenoble: high thermal n flux
- cross section burn up 163 Ho (n, γ) 164 Ho not negligible (~200 b)
- $^{165} Ho\, (n,\gamma)^{166\,m}\, Ho \, (\beta,\tau_{1/2}\sim 1200y)$ from Ho contamination or $^{164} Er$

Purification

Chemical purification @ PSI before and after the irradiation

- radiochemical separation with ion-exchange chromatography
- efficiency better than 79%
- Expected $^{166\,\mathrm{m}}$ Ho contamination fraction: $\sim 10^{-3}$

Tm 163 1.81 h ξ β+ γ 104; 69; 241; 1434; 1397	Tm 164 5.1 m 2.0 m 7	Tm 165 30.06 h \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Tm 166 7.70 h 6 β ⁺ 1.9 γ779; 2052; 184; 1274	Tm 167 9.25 d	Tm 168 93.1 d ε; β* β* γ 198; 816;
Er 162 0.139	Er 163 75 m	Er 164 1.601	Er 165 10.3 h	Er 166 33.503	Er 167 2.3 s 22.869
σ19 σ _{0. α} <0.011	β ⁺ γ (1114)	α 13 α _{n, α} <0.0012	€ no y	σ3+14 σ _{0. tt} <7E-5	ly 208 er 650 er ers a 3E-6
Ho 161 6.7 s 2.5 h	Ho 162 68 m 15 m 17 503;35 6°;6' 911,1 7 1851; 7811; 1820;283; 1319 937 6°	Ho 163	Ho 164 37 m 29 m (p-1,0, (p-37; 72, 6" 6"	Ho 165 100 3.1+58 3.1+58	Ho 166 1200 a 28.80 h 0.07 7 184; 810,712 810,712 931 93100
Dy 160 2,329	Dy 161 18.889 σ600 σ _{6, π} <1E-6	Dy 162 25.475	Dy 163 24.896 σ _{0, u} <2E-5	Dy 164 28.260	Dy 165 1.3 m 2.35 h hy 100; e ⁻ ρ ⁻ η - 09; 1.0 γ 515 γ 2000 α 3500
Tb 159	Tb 160	Tb 161	Tb 162	Tb 163	Tb 164

Sample processed

Enriched ${\rm Er_2O_3}$ samples irradiated @ ILL, pre and post processed @ PSI:

- 25 mg, 55 days irradiation, $A(^{163}Ho) \sim 5 MBq$
- 150 mg, 53 days irradiation, $A(^{163}Ho) \sim 38 MBq$
- 544 mg, 50 days irradiation, $A(^{163}Ho) \sim 120 \text{ MBq}$

September 10, 2022

4/22

* ~ 100 MBq enough for R&D and 500 pixels

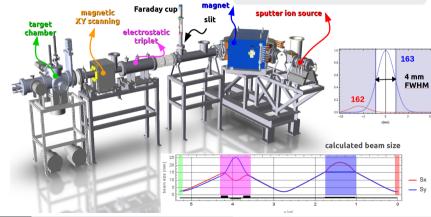
Ion implanter

5/22

Ion implanter designed to embed Ho inside the detectors absorbers and to perform a mass separation of the 163 Ho from the other contaminants.

- extraction voltage 30-50 kV \rightarrow 10-100 nm implant depth
- ¹⁶³Ho/¹⁶⁶m Ho separation better than 10⁵

Main components:

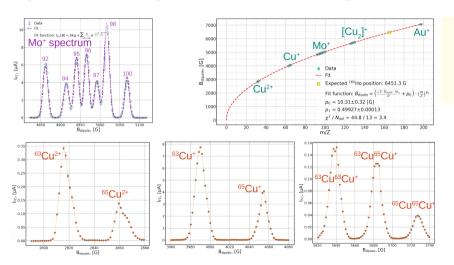

- Ar penning sputter ion source
- magnetic dipole mass analyzer ($B_{m \alpha x} = 1 T$)
- faraday cup and slit
- target chamber for Au co-evaporation

Au co-evaporation:

- to fully encapsulate the source
- to compensate the saturation of the ¹⁶³Ho concentration in the absorber
- to avoid oxidation
- heat capacity

Target chamber:

- 4 COMIC microwave sources
- 4 Ar beams hit on 4 Au targets
- $\rightarrow 4$ in order to increase the deposition rate and uniformity



Ion implanter calibration

6/22

Magnetic field vs mass-to-charge ratio calibration with Cu, Au and Mo peaks.

- Cu/Au from sputter target/holder
- Mo from the anode
- The source produces also multiple-ionized and dimeric ions from the same material, which can also be used for calibration

for more details Mariia Fedkevych's talk @ NuMass 2022

Ion source sputter target

Efforts are put to build the most suitable target for the Ho sputtering

→ different techniques for target fabrication are tested

Molecular plating

Electrodeposition of Ho complexes in an organic solvent at high voltages with high uniformity and efficiency (>90%)

Drop-on-demand inkjet printing

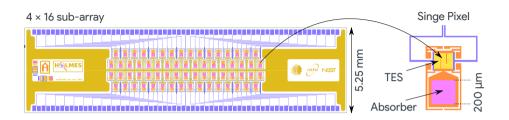
put droplets of solution containing compound and let solvent evaporate to deposit the dissolved compound

Sintered targets

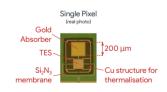
Ho(NO₃)₃ in a metallic mixture of Zr and Y fine-grained powder preparade pressed at 350 bar/cm² and baked at 950°C

Coupled reduction

Ho reduction and diffusion into backing material due to thermodynamically favourable formation of intermetallic compound

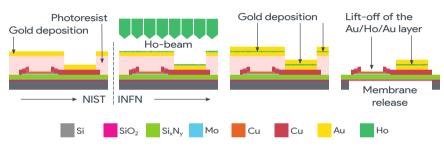


With sintered target we obtained the best current-stability:O(200) nA over 15 h!


HOLMES detectors

8/22

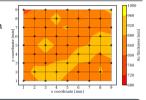
- Mo/Cu TES coupled to Gold absorbers where ¹⁶³Ho will be ion-implanted
- $2 \mu m$ Gold thickness for full e/γ absorption
- Side-car design to avoid TES proximitation effect
- Thermal conductance G engineering for $\tau_{\mbox{\tiny decay}}$ control
- 4×16 linear sub-array designed for high implant efficiency and low parasitic L
- Optimized design for high speed and high resolution:



Specs @ 2.8 keV : $\Delta E_{FWHM} \simeq 3-4\,eV$, $\tau_{\mbox{\tiny rise}} \simeq 10\,\mu s$, $\tau_{\mbox{\tiny decay}} \simeq 100\,\mu s$

9/22

¹⁶³Ho isotopes embedded in metallic absorbers (through ion-implantation)


- Fabrication in two steps:
 - NIST: TES fabrication with 1 μm Au absorber
 - $\,\blacktriangleright\,$ INFN: $^{163}\mbox{Ho}$ implantation, final deposition of 1 $\mu\mbox{m}$ Au and SiN membrane release
- final micromachining step definition in progress
 - \Rightarrow KOH vs DRIE machining

HOLMES: detectors fabrication process (cont.)

Au deposition

1µm of Au deposited

- with Ion beam sputter system
- at rate of around 52 nm/h → about 20 h for 1μm
- gold thickness uniformity $\rightarrow \sigma_{t}/t \sim 4\%$

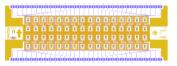
Lift-off

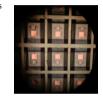
Removal of the resist mask (7 µm thickness)

- sample in acetone at 40°C for 24 h

After the lift-off, the Au deposited remains only on the absorber:

 \rightarrow Minimal crowning and almost isotropical deposition thanks to the 4 ion beam sources

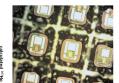




Membrane release

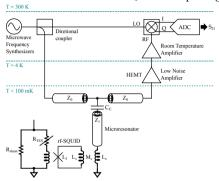
KOH

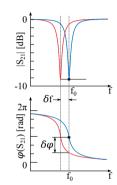
- Anisotropic wet etching
- Requires more spacing between pixels
- Sucessfully tested



DRIE

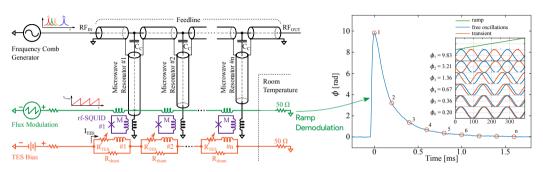
- Silicon Deep Reactive Ion Etching
- Best for close packing
- High implant efficiency
- Not yet tuned




10/22

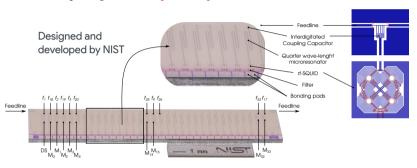
Microwave rf-SQUID multiplexing

HOLMES TESs readout is based on microwave rf-SQUID multiplexing



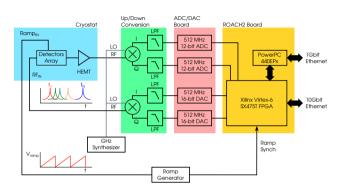
- rf-SQUID inductively coupled to a dc-biased TES and to a high-Q superconducting $\lambda/4$ -wave resonator
- Change in TES current \Rightarrow change in the input flux to the SQUID
- The rf-SQUID transduces a change in input flux into a variation of resonant frequency and phase
- Each micro-resonator can be continuously monitored by a probe tone

Microwave rf-SQUID multiplexing (cont.)



- By coupling many resonators to a single microwave feedline it is possible to readout multiple detectors
- Sensors are monitored by a set of sinusoidal probe tones (frequency comb)
- At equilibrium, the resonator frequencies are matched to the probe tone frequencies, and so each resonator acts as a short to ground
- The ramp induces a controlled flux variation in the rf-SQUID, which is crucial for linearizing the response
- Large multiplexing factor (> 100) and bandwidth, currently limited by the digitizer bandwidth

The Multiplexing chip



The core of the microwave multiplexing is the multiplexer chip

- Superconducting 33 quarter-wave coplanar waveguide (CPW) microwave resonators covering 500 MHz in the 4-8 GHz frequency range
- 200 nm thick Nb film deposited on high-resistivity silicon ($\rho > 10\,k\Omega\cdot\text{cm})$
- each resonator has a trombone-like shape with slightly different length
- 2 MHz bandwidth per resonator
- separation beetween resonances 14 MHz (to prevent cross-talk)
- resonance depth greater than 10 dB
- squid equivalent noise less than $2\mu\varphi_o/\sqrt{Hz}$

- Software Defined Radio with the open system ROACH2 (Casper collaboration)
- ADC BW 550 MHz
- real time pulse reconstruction
 - \rightarrow at the moment readout available for 64 channels

Multiplexing factor proportional to the target rise time

-
$$n_{\text{TFS}} \approx 3.4 \cdot \tau_{\text{rise}}$$

- requiring
$$\tau_{\text{rise}} = 10 \mu \text{s}$$

Event reconstruction

First level data reduction

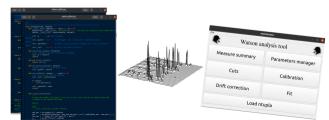
Evaluation of pulse information

Optimum filter

Arrival time correction

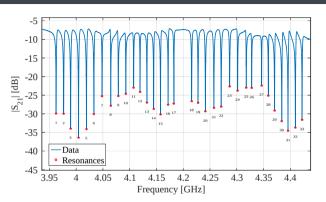
Gain drift correction

Energy calibration



Second level data reduction

- Robust analysis is mandatory for achieving the expected microcalorimeter intrinsic energy resolution.
- The data from each pixel need to be processed separately.


Watson toolkit

- Software for low temperature detector data analysis
- Object oriented programming. Written in python (numpy and scipy)
- Fast, easy to read, easy to fix code
- GUI with QT5 for handy day to day operations
- Data are stored in hdf5 (hierarchical, filesystem-like data format)

Multiplexing: characterization results

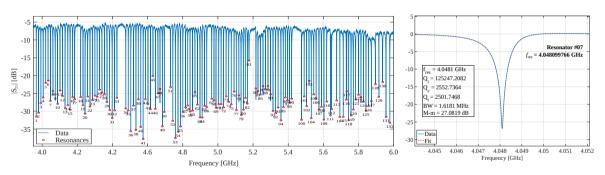
263.0	Flat noise due to the					
± 141.0	load resistor					
Adj 79.0	Flat noise due					
Densi	to the read-out					
Spectral Density [pA/v						
Sp	$27.8\mathrm{pA}/\sqrt{\mathrm{Hz}}$ $19.6\mathrm{pA}/\sqrt{\mathrm{Hz}}$					
18.0						
1	10^{2} 10^{3} 10^{4} 10^{5} Frequency [Hz]					

		Required	Measured
Resonators bandwidth	Δf_{BW} [MHz]	2	2 ± 1
Resonators spacing	$\Delta f [MHz]$	14	14 ± 1
Resonators depth	$\Delta S [dB]$	> 10	29 ± 6

All the microresonator parameters match the HOLMES specification

Improved read out noise $\rightarrow n_s = (23 \pm 2) pA / \sqrt{(Hz)}$ Previous work $\rightarrow n_s = (26 \pm 7) pA / \sqrt{(Hz)}$

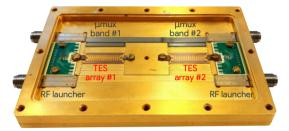
more details on IEEE TAS 31 (2021) 5, 2100205


September 10, 2022

16/22

Multiplexing: characterization results (cont.)

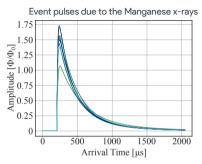
Forward transmissiom S₂₁ of 4 different band chips wired in series and an example of resonce fit

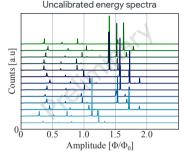


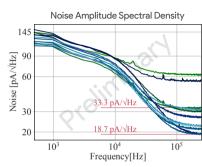
Four μ mux in series are able to cover a wide frequency range from 4 to 6 GHz

HOLMES: test on the processed detectors

18 / 22

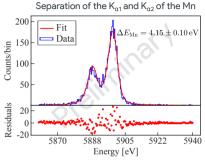

- Holder designed to host 128 Channels:
 - ► $2 \times (4 \times 16)$ sub arrays
 - 4× μmux multiplexer chips with 4 bands
- 8 holders will cover the entire HOLMES in its final configuration (1024 channels);
- Preliminary low temperature tests performed with fully processed arrays (with KOH):
 - detector with (1 μm) absorber at NIST
 - absorber finalized (1 μm) at MIB
 - wet etching at MIB
- 32+32 TES pixels bonded (half of the available)
- Absorbers without the ¹⁶³Ho implanted
- New SDR firmwares for 16 and 32 channels:
 16-channel version fully operational
 32-channel version under testing
- New up/down-conversion system fully operational $\,$

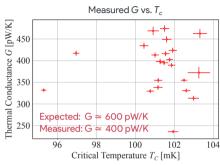

NOW2022 September 10, 2022


HOLMES: detectors characterization with a fluorescence source

19 / 22

- non implanted detectors with KOH membrane release
- 13/16 working detectors (3 detectors with problematic resonators)
- Calibration run performed with a primary ⁵⁵Fe source faced to different targets
- Calibration lines:


Measured read out noise $n_s \sim (19-33) \, pA/\sqrt{Hz}$


- Compatible with the previous prototypes Eur. Phys. J. C (2019) 79:304
- Two channels with higher noise due to not optimal rf-SQUID oscillations

HOLMES: detectors characterization results

20 / 22

For the best detector: $\Delta E_{Mn} = 4.15 \pm 0.10 \, \text{eV} @ 5.9 \, \text{keV}$

- Energy resolution in the (4 6) eV range @ 5.9 keV
 Large spread probably due to the large G dispersion different G ⇒ different working point
- $au_{rise} \simeq 20~\mu s$ and $au_{fall} \simeq 300~\mu s$ longer fall time due to lower thermal conductance G

KOH vs DRIE machining

- same energy resolution and rise time
- longer decay time and larger coupling dispersion

Background

The count rate at the ROI is very low (0.26 counts/eV/day/det @ [2650,2833]eV)

 \rightarrow the fraction of background signals must be kept as low as possible

Background

1. Pile-up

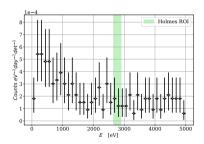
 \rightarrow the main background source for pixel with A $_{E\,C}\sim$ 300 Bq and $\tau_R\sim$ 1.5 $\mu s.$ (0.8 counts/eV/day/det @ ROI)

2. Internal radionoclides

 $^{166\,\mathrm{m}}$ Ho \rightarrow expected count rate $<\!0.01$ counts/eV/day/det @ ROI

3. Natural radioactivity

Smooth and almost flat background @ ROI except for $^{40}\mathrm{K}$


4. Cosmic rays

GEANT 4 simulation 5x10 $^{-5}$ counts/eV/day/det @ [0,4000] eV

3. and 4. can be comparable or even overcome the pile-up rate if the $^{163}{\rm Ho}$ activity per pixel is too low.

Background measurement

Single interaction in a pixel produces a background spectrum which seems to be monotonically decreasing.

0.0001 counts/eV/day/det @ HOLMES ROI

→ lowering with a muon veto

Conclusion

22 / 22

- A powerful tool to determine the effective electron-neutrino mass is the calorimetric measurement of the energy released in ¹⁶³Ho electron capture (EC)
- The HOLMES experiment will performe a direct measurement of the neutrino mass by using TES microcalorimenters
- Ion implanter is working as expected. The production of a proper sputter target is almost ready!
- The software for analysis and signal processing of microcalorimeters events is up and running!
- For reading out the 1024 detectors, HOLMES will use the microwave multiplexing read-out
 - All the microresonator parameters match the HOLMES specification
- Transition edge sensors with Au absorber where the ¹⁶³Ho will be ion-implanted
 - Tested and tuned the final array fabrication processes
 - TES characterization with a fluorescence source without Ho
 - The performances (energy and time resolution) required by HOLMES are achieved
- The first phase of the HOLMES experiment is expected on the last quarter of 2022: a low dose implantation of a 2x32 pixel array