Neutrinoless double-beta decay with LEGEND

Riccardo Brugnera Università degli Studi di Padova e INFN Padova on behalf of the LEGEND collaboration

Outline:

The LEGEND experiment: general aspects

➤ The first step: LEGEND-200

≻ LEGEND-1000

LEGEND

R. Brugnera

NOW 2022, 10 September 2022

0νββ decay

The Legend Experiment: general aspects

- ➢ For the physics motivation and experimental situation of the 0νββ research field: <u>plenary talks of Giuliani and Benato</u>
- For news about GERDA: <u>Comellato's talk</u>

R. Brugnera

Large Enriched Germanium Experiment for Neutrinoless *ββ* Decay - LEGEND

LEGEND mission:

"The collaboration aims to develop a phased Ge-76 based double-beta decay experimental program with discovery potential at a half-life significantly longer than 10²⁷ years, using existing resources as appropriate to expedite physics results"

R. Brugnera

The ⁷⁶Ge experiments: GERDA & MJD

GERDA

- Bare ^{enr}Ge array in liquid argon
 Shield: high purity liquid Argon/II
- Shield: high-purity liquid Argon/H₂O
 Phase I: 17 kg (IIdM/ICEX)
- Phase I: 17 kg (HdM/IGEX)
 Phase II: 25 8 kg appriced in 7
- Phase II: 35.8 kg enriched in ⁷⁶Ge

MAJORANA-DEMONSTRATOR (MJD)

- Arrays of ^{enr}Ge housed in high-purity electroformed copper cryostat
- Shield: electroformed copper/lead
- 30 kg enriched in ⁷⁶Ge

Physics goals: degenerate mass range
 Technology: study of backgrounds and exp. techniques

- exchange of knowledge & technologies (e.g. MaGe MC)
- intention to merge for future large scale ⁷⁶Ge experiment selecting the best technologies tested in GERDA & MJD

R. Brugnera

R. Brugnera

LEGEND: a staged approach

First Stage (LEGEND-200):

- ➢upgrade of the existing infrastructure of GERDA up to 200 kg
- ➢reduction of the BI of a factor 5 w.r.t. GERDA Phase II goal
- ➢ to reach 200 kg: 35 kg from GERDA + 30 kg from MJD. The remaining 140 kg are new

Further Stages (LEGEND-1000):

- ≻1000 kg (staged)
- timeline and budget: highest priority from DOE after the recent Portfolio review (July 2021)
- Background reduction of a factor 20 w.r.t. LEGEND-200
- ≻Location to be defined
- ≻Presently SNOLAB is the baseline site
- LNGS could be a solution: mitigation of cosmogenic ^{77(m)}Ge background under investigation

sensitivity and discovery

Plots details:

➤ ~69% efficiency (including: isotopic fraction, active volume fraction, analysis cuts)

- ➢ GERDA Phase II: 1.5 counts/(FWHM · ton · yr) —
- LEGEND-200: 0.5 counts/(FWHM·ton·yr)
- LEGEND-1000: 0.025 counts/(FWHM·ton·yr)

R. Brugnera

NOW 2022, 10 September 2022

N.B.: background-free^(*) condition is a prerequisite for a discovery

(*) average expected bkg events < 1.0 in the ROI for the entire exposure

LEGEND: general layout

R. Brugnera

NOW 2022, 10 September 2022

0νββ decay

clean materials

Underground electroformed copper

reduces U/Th cosmogenic activation of 60 Co in Cu $< 0.017 \pm 0.03 \text{ pg}({}^{238}\text{U})/\text{g}$ $< 0.011 \pm 0.05 \text{ pg}({}^{232}\text{Th})/\text{g}$

Underground electroformed copper

- Polyethylene naphtalene (PEN) replaces optically inactive structural materials
- Shift 128 nm LAr scintillation light to ~440 nm
- Yield strength higher than copper at cryogenic temperatures
- Evaluated in L-200

PEN: scintillating high purity detector support

R. Brugnera

NOW 2022, 10 September 2022

Inverted Coaxial Point Contact (ICPC) detector

- ICPC is the detector chosen for LEGEND
- It has the same **excellent energy resolution** and **pulse shape discrimination** power of the point-contact detector (used in GERDA and in MJD)
- but higher mass (> 2 kg) respect to the previous point-contact det. (~0.7-0.9 kg)
- this means less cables, less electronics channels —> less background
- A already successfully used in GERDA for 18 months

active background reduction tools

Point-like (single-site) energy deposition inside one HP-Ge diode

Multi-site energy deposition inside HP-Ge diode (Compton scattering), or surface events

Anti-coincidence with the muon veto
 Anti-coincidence between detectors (cuts multi-site)
 Active veto using LAr scintillation (LAr Veto)
 Pulse shape discrimination (PSD)

R. Brugnera

NOW 2022, 10 September 2022

Pulse Shape Discrimination (PSD)

R. Brugnera

Liquid Argon Veto

128 nm LAr scintillation light readout by TPB coated WLS fibers coupled to SiPMs arrays

Single photo-electron resolution

charge [a.u.]

R. Brugnera

NOW 2022, 10 September 2022

The first step: Legend-200

NOW 2022, 10 September 2022

LEGEND-200

- L-200 uses the GERDA infrastructure (cryostat, clean room, water plan, ...) at LNGS
- new elements: part of the enriched Ge detectors, cables, LAr veto, FE electronics, DAQ
- February 2020: L-200 took over the GERDA infrastructure
- November 2021: start commissioning
- End of 2022: start of the physics run with ~150 kg of enriched detectors
- > In 2023: upgrade to ~ 200 kg of enriched detectors

LEGEND-200 background projections

R. Brugnera

NOW 2022, 10 September 2022

0νββ decay

ICPC: energy resolution

- Excellent energy resolution leads to lower backgrounds and higher discovery potential
- No resolution degradation seen in higher-mass ICPCs
- Well-understood peak shape, energy scale stability, and linearity (better than 0.1%) lead to improved confidence in results

Energy resolution of ICPCs from characterization tests and calibration runs in GERDA and MJD

LAr veto

LECKND

External LAr Veto: 20 modules, 40 readout channels

 $0\nu\beta\beta$ decay

Internal LAr Veto : 9 modules, 18 readout channels

R. Brugnera

NOW 2022, 10 September 2022

17

LAr veto: commissioning

- Single and pile-up events of a typical channel in events within [-1, 10] µs of a Ge detector trigger
- •Excellent baseline (few tens of μV
- •PE spectrum allows for SPE separation (small random coincidences rate)

LEGEND-200: present status

R. Brugnera

NOW 2022, 10 September 2022

LEGEND-200: present status

•Preliminary energy resolution (FWHM) of the detectors vs their masses. (using data from Th calibration runs)

- •Resolution does not depend on detector mass, heavier detectors sport excellent resolution
- •Work on-going on read-out/noise to improve resolution on some channels

•First checks of the PSD cut (using data from Th calibration runs)

20

LEGEND-1000

NOW 2022, 10 September 2022)

 $0ν\beta\beta$ decay

LEGEND-1000: performance parameters

$0\nu\beta\beta$ decay isotope	⁷⁶ Ge
Q_{etaeta}	2039 keV
Total mass	1000 kg
Energy resolution at $Q_{\beta\beta}$	2.5 keV FWHM
Overall signal acceptance	0.69
Live time goal	10 yr
Total exposure goal	$10 \mathrm{tyr}$
Background goal	$<1\times 10^{-5}{\rm cts}/({\rm keVkgyr})$
	$<0.025{\rm cts}/({\rm FWHMtyr})$
$T^{0 u}_{1/2}$	$1.3\times 10^{28}{\rm yr}$ (99.7% C.L. discovery)
	$1.6\times 10^{28}{\rm yr}$ (90% C.L. sensitivity)
m_{etaeta}	$9.4-21.4\mathrm{meV}$ (99.7% C.L. discovery)
	$8.5 - 19.4 \mathrm{meV} \ (90\% \ \mathrm{C.L. \ sensitivity})$

Cryostat and Water Tank

- Baseline cryostat allows deployment of 4 separate Ge payloads, each 250 kg of detectors (max. 420 kg)
- Allows staging: physics data taking with 1st payload
- 4 re-entrant tubes (1 m diam, 3.3 m³) contain underground Ar

LEGEND-1000 @ SNOLAB

R. Brugnera

NOW 2022, 10 September 2022

0νββ decay

Underground Liquid Argon

- one of the most important background: ⁴²K from ⁴²Ar (produced in atmosphere by cosmic rays)
- in GERDA and in LEGEND-200 under control thanks to nylon minishrouds and PSD
- in LEGEND-1000 we think to use underground Ar (~18.5 t in the 4 re-entrant tubes)
- technology developed by the DarkSide collaboration
- expected a reduction factor of ~1400 in ⁴²Ar respect to the ⁴²Ar content in atmospheric Ar (similar to the reduction of ³⁹Ar)

Credit: DarkSide/Argo collaboration

24

R. Brugnera

NOW 2022, 10 September 2022

0νββ decay

LEGEND-1000 background projections

Expected total spectrum from $2\nu\beta\beta$ decay and from all background components after all cuts

Expected contribution to the background index of L-1000 after all cuts:

BI = $9.1^{+6.3}_{-4.9} \cdot 10^{-6} \text{ cts/(keV \cdot kg \cdot yr)}$

R. Brugnera

LEGEND-1000 target sensitivities

- $m_{\beta\beta} = m_e / \sqrt{G g_A^4 M^2 T_{1/2}}$
- Inverted Ordering: $m_{\beta\beta} > 18.4 \pm 1.3 \text{ meV}$
- the discovery sensitivity required depends on the matrix element used
- the range of values given depends on the matrix elements that has been calculated for each isotope
- LEGEND-1000 will fully test inverted order and a large part of the normal ordering

 $0\nu\beta\beta$ decay

R. Brugnera

Alternative site: LNGS

- Baseline site: SNOLAB due to the depth: 6010 m.w.e. Reduction of a factor 100 of the muon flux and cosmogenic backgrounds respect to LNGS (3500 m.w.e.)
- Main concern is the muon-induced background ^{77m}Ge
- This background can be reduced at a manageable size by the use of delayed coincidence.
- Optimize rejection strategy with L-200

Summary

LEGEND

- The use of Ge detectors has permitted to obtain leading results in the search for $0\nu\beta\beta$ decay
- The LEGEND experiment combines the best technologies from the two Ge experiments: GERDA and MAJORANA-DEMONSTRATOR
- Key feature is the staged approach: leading results at each phase
- The first phase is LEGEND-200 at LNGS using the GERDA infrastructure: the aim is to reach the limit of 10²⁷ yr in the half-life of the 0vββ decay of ⁷⁶Ge
- LEGEND-200 is now in commissioning phase, foreseen start of physics run fall 2022
- The ultimate phase will be LEGEND-1000 able to reach an half-life greater than 10²⁸ yr covering the entire inverted ordering region
- The LEGEND-1000 approval process is already begun: DOE Portfolio review (July 2021) for the choice of the best Ton-scale experiment put highest priority on LEGEND-1000.